Гидромеханическая трансмиссия

Управление гидромеханической коробкой передач

Система управления переключением передач в ГМП (рис. 1) состоит из двух частей (подсистем): управляющей и исполнительной. Исполнительной частью системы управления является масляная система (рис. 1, а). Основными составными частями ее являются масляный насос 2, фильтр 3, управляющие клапаны 4, 5, главный золотник 6, гидравлические цилиндры 7, 8.

Масляный насос 2 создает давление в главной магистрали, которое подается к управляющим клапанам 4 и 5 золотникового типа. В зависимости от положения золотников управляющих клапанов и давления на выходе из них главный золотник занимает такое положение, при котором масло поступает в один из гидравлических цилиндров 7 или 8 включения фрикционов или ленточных тормозных механизмов.

45

Чаще управление основными режимами работы коробки передач осуществляется в полуавтоматическом режиме. В этом случае в управляющую систему вводится пульт с кнопками или специальный селектор, устанавливаемый на рулевой колонке или на месте рычага переключения передач.

Упрощенно работа системы управления в полуавтоматическом режиме представлена на рис. 1, б.

При установке селектора в нейтральное положение в коробке передач все передачи выключены.

В положение селектора А1 автоматически включаются первая и третья передачи и блокировка гидротрансформатора на третьей передаче.

В положении селектора А2 включаются первая и вторая передачи и блокировка гидротрансформатора на второй передаче.

При установке селектора в положение ЗХ включается передача заднего хода.

В положении ПП принудительно включается первая передача.

При изменении положения главного золотника, которое зависит от скоростного и нагрузочного режима работы, масло из главной магистрали подается под давлением к одному из выключателей 15, 16, 17, которые замыкают цепь питания электромагнитов 9, 10, 13, 14 клапанов, которые, в свою очередь, открывают доступ масла к исполнительным механизмам коробки передач.

На современных легковых автомобилях система управления автоматическими коробками передач имеет более сложную конструкцию, включающую электронные блоки управления, способные проводить анализ многих параметров и выдавать соответствующие команды исполнительным механизмам.

Пример применения электроники в управлении механической коробкой передач приведен на рис. 2.

Управление коробкой автоматическое или в ручном режиме с помощью подрулевых переключателей 4 или селектора 5, являющегося по сути джойстиком. Переход на автоматический режим работы коробки передач осуществляется кнопкой 6.
Информация от контрольных систем тормозных механизмов, электронного блока двигателя поступает в электронный блок 3 коробки передач. Туда же поступают данные о положении педали 7 управления подачей топлива и датчика 2 частоты вращения первичного вала коробки передач.

Электронный блок коробки передач выдает в нужный момент команду устройству 1 переключения передач и устройству 8 выключения сцепления, при этом номер включенной передачи высвечивается на табло панели приборов.
В ручном режиме электронный блок коробки передач обеспечивает снижение частоты вращения коленчатого вала при переходе на высшую передачу и увеличение частоты вращение при переходе на низшую передачу с целью выравнивания угловых скоростей блокируемых валов.

***

Учебные дисциплины
  • Инженерная графика
  • МДК.01.01. «Устройство автомобилей»
  •    Карта раздела
  •       Общее устройство автомобиля
  •       Автомобильный двигатель
  •       Трансмиссия автомобиля
  •       Рулевое управление
  •       Тормозная система
  •       Подвеска
  •       Колеса
  •       Кузов
  •       Электрооборудование автомобиля
  •       Основы теории автомобиля
  •       Основы технической диагностики
  • Основы гидравлики и теплотехники
  • Метрология и стандартизация
  • Сельскохозяйственные машины
  • Основы агрономии
  • Перевозка опасных грузов
  • Материаловедение
  • Менеджмент
  • Техническая механика
  • Советы дипломнику
Олимпиады и тесты
  • «Инженерная графика»
  • «Техническая механика»
  • «Двигатель и его системы»
  • «Шасси автомобиля»
  • «Электрооборудование автомобиля»

Конструкция

Конструкция устройства может предполагать использование в качестве ведущих переднюю и заднюю пары колес.

Если как ведущие используются задняя пара колес, то автомобиль получается заднеприводным, а если передняя – переднеприводным. Если авто имеет привод одновременно на задние и передние колеса 4х4, то полноприводные.

Авто с разным типом привода имеют свою конструкцию трансмиссии, которая часто существенно отличается по составу элементов и их исполнению.

Так в заднеприводной машине это последовательно расположенные элементы: сцепление, КП, карданная и главная передачи, дифференциал, полуоси.

Сцепление

Сцепление служит для непродолжительного отсоединения движка от трансмиссии и последующего плавного соединения этих элементов после переключения передачи, а также защиты деталей от избыточных нагрузок.

Коробка передач

Коробка передач изменяет крутящий момент, скорость и направление движения, а также разъединяет на продолжительное время двигатель и трансмиссию. Коробки бывают механические, роботизированные и классические (гидротрансформатор — планетарные передачи)

Карданная передача

Карданная передача нужна для трансляции кр.момента со вторичного вала коробки на вал гл.передачи, которые находятся под углом друг относительно друга.

Главная передача

ГП необходима, чтобы увеличить кр.момент, изменить направление и передать его на полуоси. Обычно в авто применяют гипоидную главную передачу (зубы передачи не прямые как обычно, а радиальные).


Дифференциал

Дифференциял раздает кр.момент по ведущим колесам, и позволяет полуосям вращаться с отличными друг от друга угловыми скоростями, в процессе поворота транспортного средства.

Трансмиссия? А это что такое и зачем?

Для автомобиля трансмиссией будет всё, что обеспечивает поступление крутящего момента к колёсам от двигателя, в том числе КПП и сцепление. В классическом транспортом средстве это было именно так. Но, как уже отмечалось выше, в современных легковых автомобилях им на смену приходит АККП. В этом случае управление машиной значительно упрощается – не надо пользоваться сцеплением и переключать вручную КПП. Педаль сцепления просто-напросто отсутствует, а переключения выполняются автоматически.

Происходит это благодаря гидромеханической коробке передач. Чтобы понять, что это такое, лучше всего вспомнить о двух основных моментах, возникающих во время управления автомобилем:

  • необходимости отключения от двигателя трансмиссии при переключении передач;
  • изменении значения крутящего момента, передаваемого от мотора к колесам при изменении дорожных условий.

В обычной автомашине это происходит при нажатии на сцепление и переключении ручки коробки передач. Однако в машинах с АКПП подобное действие во многих случаях выполняет гидромеханическая коробка передач.

Рекомендации по обслуживанию и эксплуатации ГДТ

Применение «бублика» в трансмиссии упрощает и облегчает управление автомобилем даже в тяжелых условиях. Однако, АКПП с гидротрансформатором при сравнении с МКПП проигрывает по параметрам:

  • низкий КПД без применения блокировки;
  • расход топлива на 10% выше;
  • малый диапазон изменения крутящего момента «бублика» и необходимость установки планетарного редуктора;
  • сложность конструкции и обслуживания;
  • высокая стоимость.

Чтобы стать постоянным клиентом мастерской по ремонту гидротрансформатора АКПП, нужно соблюдать два правила:

  • как можно чаще вжимать педали газа и тормоза в пол, чтобы быстрее истереть фрикцион муфты блокировки в абразивную пудру, загрязнить масло и ускорить износ автомата;
  • никогда не менять жидкость, особенно, если она черная, горячая, а уровень выше или ниже нормы.

Если серьезно, то ГДТ выходит из строя медленно и незаметно для водителя. Явный сигнал неисправности — течь масла в месте соединения гидротрансформатора и двигателя. Другие признаки неполадки могут проявляться уже на стадии распространения «заболевания» по все АКПП. Поэтому, если автомобиль ведет себя странно: медленно разгоняется, увеличил расход топлива, при движении появляется вибрация — нужно отправить машину на проверку.

Перед самостоятельным осмотром коробки нужно изучить устройство и особенности конкретной модели АКПП. Чтобы добраться до гидротрансформатора, придется снимать всю коробку. Без распила и разборки отремонтировать «бублик» не получится. Промывка гидротрансформатора растворителями может повредить колесам и «разъесть» сальники.

После ремонта и сборки АКПП необходима балансировка гидротрансформатора. Не все сервисы проводят эту операцию, поскольку она трудоемка и проблематична. ГДТ работает на высоких оборотах — дисбаланс или нарушение соосности валов выведут из строя не только «бублик», но и всю АКПП.

Срок службы современного гидротрансформатора АКПП составляет 150 — 200 000 км. Ресурс сократится до 100 000, если менять масло. Фрикционы истираются к 120 — 150 000 км и тоже требуют замены. После 200 000 км «бублику» с регулируемым проскальзыванием прописан плановый капремонт.

Что представляет собой гидротрансформатор АКПП

На сленге автовладельцев и опытных механиков это устройство называют бубликом. Прозвище появилось из-за схожести гидротрансформатора с хлебным изделием по внешнему виду. Чтобы понять на сколько важен этот аппарат в АКПП, нужно разобрать принцип работы гидротрансформатора и посмотреть на его устройство изнутри.

Некоторые автовладельцы называют его гидромуфтой. Это название ближе к нему и лежит в области механики. Происходит из-за того, что ГДТ соединяет двигатель и АКПП, выполняя роль сцепления.

Только две автоматические коробки поддерживают наличие гидротрансформатора. Это:

  • автоматический тип или стандартный автомат;
  • вариаторный тип коробки передач или CVT.

Устройство ГДТ

Гидротрансформатор представляет собой сложное устройство. Неисправности в любом из его комплектующих могут привести к тому, что автомобиль либо вообще не тронется с места, либо не сможет разогнаться.

Он меняет и передает крутящий момент на двигатель транспортного средства. Состоит из следующих элементов:

  • насосное колесо, которое создает поток смазки. Масло течет и создает давление, заставляя вращаться следующие элементы;
  • турбина вращается за счет потока масла, созданного насосным колесом;
  • реакторное колесо, принцип работы идентичен турбине;
  • муфта свободного хода или обгонная;
  • блокировочная муфта.

ГДТ размещается между мотором и трансмиссией в отсеке полностью заполненным трансмиссионной жидкостью. Масло выполняет роль не только смазывающего средства, но становится «мокрым» сцеплением.

Неисправности ГДТ отрицательно влияют на следующие комплектующие АКПП:

  • маслонасос;
  • гидроблок;
  • уменьшают жизненный ресурс всей коробки передач.

Важную роль в работе гидротрансформатора играет блокировочная муфта. Блокировка повышает экономичность расхода топлива автомобиля.

Блокировка

Когда будет происходить блокировка определяет электронный блок управления АКПП. А принцип ее функционирования состоит в торможении автомобиля и уменьшении скорости вращения гидротрансформатора. Таким образом крутящий момент передается напрямую от двигателя коробке. Происходит это до тех пор, пока снова не поменяется передача.

Блокировочная муфта состоит из:

  • поршня с уплотнительными кольцами;
  • крышки;
  • ступицы, которая соединена с колесом и валом;
  • двух ведущих дисков из стали;
  • три ведомых дисков из металлокерамики.

Диски соединены в одном корпусе, которые находятся в тандеме с насосным колесом с одной стороны, а с другой с крышкой.

У блокировочной муфты гидротрансформатора имеются недостатки:

  • когда происходит блокирование гидротрансформатора, водитель может почувствовать эти удары или толчки (на примере недоработанных особенностей коробки DP0 от французского концерна «Пежо-Ситроен»);
  • снижается плавность хода;
  • быстро изнашивается фрикционный диск, смазка загрязняется и теряет свои свойства.

Положительные стороны блокировки – снижается количество потребляемого топлива транспортным средством.

Принцип работы

Гидротрансформатор может работать в трех режимах.

Название режима Принцип работы
Преобразование крутящего момента Происходит во время начала движения, при езде по проселочным дорогам, разгоне и подъеме по склону. Насосное колесо направляет поток смазки на турбину и реактор. Происходит подъем крутящего момента. Это нужно, чтобы мощь автомобиля увеличилась и он преодолел силу тяжести и своего веса
Включение обгонной муфты В режиме гидромуфты снижается нагрузка на турбину, выравниваются вращения насосного и реакторного колес. Они вращаются в одном направлении. Включается во время движения по ровному пути
Блокировка Запускается после переключения всех скоростей. Используется на склонах, на ровных дорожных путях для снижения расхода топлива. Комплектующие в ГДТ вращаются как единое целое

Дополнительные функции гидротрансформатора:

  • бережет АКПП от появления неисправностей во время набора скорости и при резком торможении. Эту роль выполняет ATF и демпфер;
  • увеличивает вращение. Во время разгона увеличивается крутящий момент в два раза, уменьшается скорость на выходном валу.

Как работает планетарная передача

Почему в АКПП в подавляющем большинстве случаев применяется планетарная передача, а не валы с шестернями, как в механической коробке? Планетарная передача более компактна, она обеспечивает более быстрое и плавное переключение скоростей без разрыва в передаче мощности двигателя. Планетарные передачи отличаются долговечностью, так как нагрузка передается несколькими сателлитами, что снижает напряжения зубьев.

В одинарной планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй — ведомым. Третий элемент при этом неподвижен.

Неподвижный Ведущий Ведомый Передача
Корона Солнце Водило Понижающая
Водило Солнце Повышающая
Солнце Корона Водило Понижающая
Водило Корона Повышающая
Водило Солнце Корона Реверс, понижающая
Корона Солнце Реверс, повышающая

Для получения прямой передачи необходимо зафиксировать между собой два любых элемента, которые будут играть роль ведомого звена, третий элемент при таком включении является ведущим. Общее передаточное отношение такого зацепления 1:1.

Таким образом, один планетарный механизм может обеспечить три передачи для движения вперед (понижающую, прямую и повышающую) и передачу заднего хода.

Передаточные отношения одиночного планетарного ряда не дают возможности оптимально использовать крутящий момент двигателя. Поэтому необходимо соединение двух или трех таких механизмов. Существует несколько вариантов соединения, каждое из которых носит название по имени своего изобретателя.

Механизм Симпсона

Планетарный механизм Симпсона, состоящий из двух планетарных редукторов, часто называют двойным рядом. Обе группы сателлитов, каждая из которых вращается внутри своей коронной шестерни, объединены в единый механизм общей солнечной шестерней. Планетарный ряд такой конструкции обеспечивает три ступени изменения передаточного отношения. Для получения четвертой, повышающей, передачи последовательно с рядом Симпсона установлен еще один планетарный ряд. Схема Симпсона нашла наибольшее применение в АКПП для заднеприводных автомобилей. Высокая надежность и долговечность при относительной простоте конструкции – вот ее неоспоримые достоинства.

Механизм Равинье

Планетарный ряд Равиньё иногда называют полуторным, подчеркивая этим особенности его конструкции: наличие одной коронной шестерни, двух солнечных и водила с двумя группами сателлитов. Главным преимуществом схемы Равиньё является то, что она позволяет получить четыре ступени изменения передаточного отношения редуктора

Отсутствие отдельного планетарного ряда повышающей передачи позволяет сделать редуктор коробки очень компактным, что особенно важно для трансмиссий переднеприводных автомобилей. К недостаткам следует отнести уменьшение ресурса механизма приблизительно в полтора раза по сравнению с планетарным рядом Симпсона

Это связано стем, что шестерни передачи Равиньё нагружены постоянно, на всех режимах работы коробки, в то время как элементы ряда Симпсона не нагружены во время движения на повышенной передаче. Второй недостаток – низкий КПД на пониженных передачах, приводящий к снижению разгонной динамики автомобиля и шумности работы коробки.

Коробка передач Уилсона состоит из 3 планетарных редукторов. Коронная шестерня первого планетарного редуктора, водило второго редуктора, и коронная шестерня третьего постоянно соединены между собой, образуя единое целое. Кроме того, второй и третий планетарные редукторы имеют общую солнечную шестерню, которая приводит в действие передачи переднего хода. Схема Уилсона обеспечивает 5 передач вперед и одну заднего хода.

Планетарная передача Лепелетье объединяет в себе обыкновенный планетарный ряд и пристыкованный за ним планетарный ряд Равинье. Несмотря на простоту, такая коробка обеспечивает переключение 6 передач переднего хода и одну заднего. Преимуществом схемы Лепелетье является ее простая, компактная и имеющая небольшую массу конструкция.

Конструкторы постоянно совершенствуют АКПП, увеличивая количество передач, что улучшает плавность работы и экономичность автомобиля. Современные «автоматы» могут иметь до восьми передач.

Устройство и принцип работы коробки-автомат

В устройство АКПП входит механическая и гидравлическая системы, а также электронный блок управления, регулирующий работу коробку. Конструкционно гидромеханическая АКПП включает:

  • Гидротрансформатор – агрегат, передающий усилие с двигателя на планетарный механизм АКПП. Состоит из насосного и турбированного колеса, между которыми разница давления трансмиссионной жидкости заставляет коробку повысить или понизить передаточного число планетарного редуктора.

  • Гидроблок – гидроклапанная плита, которая синхронизирует все клапаны и фрикционные каналы в гидравлических магистралях АКПП. Основное предназначение гидроблока – управление планетарным механизмом.

  • Планетарный механизм – редуктор, преобразующий давление трансмиссионного масла в полезную энергию. Конструкционно редуктор состоит из планетарных рядов с шестернями передач, которые соединены обгонной и тормозными муфтами.

  • Маслонасос – гидравлический компрессор, поддерживающий давление трансмиссионной жидкости внутри гидротрансформатора на требуемом уровне.

  • Ленточный тормоз – функциональный элемент, позволяющий заблокировать планетарный механизм во время переключения передач. Необходим для снижения ударов и пинков АКПП в момент переключения.

  • Обгонная муфта – механизм, стабилизирующий разницу крутящего момента между ведомым и ведущим валом. Данный элемент необходим для защиты планетарного механизма от перегрузки и предупреждения микропроскальзываний АКПП.

  • Фрикционные муфты – элемент передачи вращательного момента между валами за счет трения и скольжения. Фрикционные муфты обеспечивают синхронизацию планетарного механизма при работе на высоких оборотах без риска потери КПД или механической деформации его комплектующих.

Принцип действия АКПП заключается на передачи крутящего момента двигателя за счет давления на трансмиссионную жидкость через гидротрансформатор коробки на шестерни передач. Переключение передач происходит в связи с изменением давления в линейных магистралях гидроблока, что заставляет гидротрансформатор передавать момент двигателя на иной ряд передач в планетарном механизме.

Устройство АКПП: из чего состоит автоматическая коробка передач?

Гидромеханическая коробка передач является сложно конструкционным элементом трансмиссии автомобиля. Устройство автоматической коробки включает в себя:

  • Гидротрансформатор – механизм, за счет которого осуществляется возможность переключения передач. Принцип действия гидротрансформатора заключается в преобразовании крутящего момента через рабочую жидкость АКПП (трансмиссионное масло);
  • Планетарный механизм – преобразующий редуктор, который работает в связке с ленточным тормозом, обгонной муфтой и планетарными рядами. Планетарный ряд представляет собой основной узел автоматической коробки передач. Также встречаются АКПП вальном конструкции, где планетарный ряд заменен 2 или 3 валами;
  • Блок управления гидромеханикой или гидроблок – комплекс механизмов, функциональное предназначение которых заключается в управлении планетарным редуктором. Гидроблок – гидравлическая клапанная плита, включающая клапаны, соленоиды, АКБ и соединяющие фрикционные каналы. Блок управления АКПП может быть, как механическим, так и электронным;
  • Ленточный тормоз – необходим для кратковременного блокирования планетарного ряда гидромеханики. Наличие тормозной ленты в АКПП позволяет сглаживать переключение передач минимизировав при этом толчки и пинки коробки;
  • Масляной насос – важный конструкционный узел, поддерживающий давление рабочей жидкости в гидротрансформаторе;
  • Обгонная муфта – фрикционный элемент, уравновешивающий крутящий момент от ведомого вала к ведущему. Обгонная муфта позволяет предотвратить перегруз планетарного ряда и вероятность микро проскальзываний;
  • Фрикционные муфты – устройство передачи вращательного движения путем силы трения и скольжения. Данный узел позволяет синхронизировать валы планетарного ряда на больших оборотах без потери ресурса эксплуатации.

Дополнительно требуется отметить также рабочую жидкость или трансмиссионное масло. Именно от качества и температуры рабочей жидкости в гидромеханике зависят плавность переключения передач и ресурс эксплуатации коробки. В некоторых АКПП производители устанавливают табличку с регламентом и интенсивностью обслуживания, на других – говорят о не обслуживаемости системы. Однако стоит помнить, что на практике не обслуживаемых коробок не существует и чем раньше будет заменено масло в АКПП, тем дольше прослужит ее механизм.

Плюсы и минусы АКПП

Какая лучше коробка передач: автомат или механика? Популярность гидроавтомата объясняется его преимуществами, видимыми при сравнении с механикой. К их списку относят:

  • автоматическая активация передач, позволяющая водителю полностью контролировать положение на трассе;
  • начать движение максимально легко;
  • бережная эксплуатация ходовой;
  • экономия топлива;
  • гарантия безопасности;
  • более высокий КПД и экономия топлива при езде по трассе по сравнению с механикой;
  • повышение проходимости.

Несмотря на достаточное количество преимуществ, автолюбители, которые долгое время пользовались механикой, видят не менее значимые недостатки:

  • нет возможности быстро разогнаться;
  • повышенный расход топлива в городских условиях;
  • нельзя быстро перейти с режима минимальной тяги на максимальную;
  • нереально завести ТС с толкача, если стартер не работает. Придётся вызывать эвакуатор;
  • коробка быстро выходит из строя при игнорировании норм эксплуатации;
  • регулярное ТО и ремонт обходятся дорого.

Эта разновидность коробки передач имеет свои конструктивные особенности – это нравится не всем владельцам. Не каждое подробное описание и схема позволяют качественно разобраться в устройстве запчасти и произвести её ремонт. Многим владельцам нравится механика тем, что она гораздо проще, потому они жертвую комфортом вождения в пользу экономии.

Видео: Особенности коробки «автомат»

Аббревиатура АКПП расшифровывается как автоматическая коробка переключения передач. Такая система позволяет повысить комфорт вождения и заметно упрощает управление авто в сравнении с классической МКПП. Автомат обеспечивает лёгкое переключение передач, постоянный контроль мощности двигателей без усилий со стороны водителя.

Сразу после механического варианта появился гидромеханический. Он работает как автономное устройство, представлен гидротрансформатором и планетарной коробкой передач. Работа трансмиссии автомобиля никак не зависит от связки между мотором и коробкой, крутящий момент передаётся с помощью турбин и трансмиссионного масла.

Сейчас гидромеханика уходит на второй план. Производители авто представительского класс отдают предпочтение роботизированным, вариаторным и DSG вариантам. Их считают надёжными, но не лишёнными недостатков. При несоблюдении норм эксплуатации срок их службы сокращается, системы выходят из строя, требуется дорогостоящий ремонт.

Какая у вас коробка передач?

АКПП
62.22%

МКПП
26.67%

Робот
4.44%

Вариатор
6.67%

DSG
0%

Проголосовало: 45

Сколько раз прочитали статью: 1 259

Назначение комбинированной трансмиссии легкового авто

Образ жизни современных водителей существенно меняется и сегодня все больше требований предъявляются к созданию оптимальных комфортных условий во время вождения. Стандартные узлы автомобилей терпят существенные изменения, среди ярких примеров можно выделить комбинирование механической и гидравлической КП. Если говорить о гидромеханической трансмиссии и что это такое, первым делом стоит понять, в чем ее предназначение. Главное отличие заключается в плавном изменении вращающего движения. Облегченное управление позволило отказаться от использования сцепления, поскольку комбинированная КП отвечает за все процессы. При АКПП можно говорить о следующих ситуациях, касающихся управления авто:

  • Во время переключения скоростей трансмиссия отключается от силового агрегата.
  • Если дорожные условия меняются, величина вращающего момента также будет менять свое значение.

Использование АКПП на авто позволяет получить несколько неоспоримых преимущества. Помимо автоматизации переключения скоростей стоит отметить также повышение эксплуатационных характеристик силового агрегата и коробки и улучшение проходимости транспортного средства в условиях бездорожья.


Гидравлическая коробка автомат

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий