Содержание
- 1 Устройство, принцип работы, режимы
- 2 Гидромуфты подразделяются на регулируемые и замкнутые.
- 3 Рекомендации по обслуживанию и эксплуатации ГДТ
- 4 Как пользоваться автоматической коробкой передач
- 5 Достоинства и недостатки
- 6 Признаки неисправности
- 7 Причины неисправности
- 8 Как действует гидротрансформатор АКПП
- 9 «Бублик» в коробке автомат: что это такое
Устройство, принцип работы, режимы
Конструкция гидротрансформатора включает в себя всего несколько элементов:
- Насосное колесо;
- Турбинное колесо;
- Статор, он же – реактор;
- Корпус;
- Механизм блокировки;
Монтируется гидротрансформатор на маховике двигателя, но одна из составляющих его имеет жесткую связь с валом коробки передач.
Если провести аналогию этого типа передачи с обычным сцеплением фрикционного типа, то насосное колесо выполняет роль ведущего диска (жестко соединено с коленчатым валом мотора), а турбинное – ведомого (прикрепленного к валу КПП). Вот только физического контакта между этими колесами нет.
Примечательно, что даже расположение этих колес идентично фрикционному сцеплению – турбинное колесо располагается между маховиком и насосным колесом.
Все составные части гидротрансформатора заключены в герметичный корпус, заполненный специальной рабочей жидкостью — маслом ATF. За счет своей формы этот элемент трансмиссии получил народное название «бублик».
Суть работы гидротрансформатора очень проста. На колесах устройства имеются лопасти, которые перенаправляют жидкость в определенном направлении.
Вращаясь вместе с маховиком, насосное колесо создает поток жидкости и направляет его на лопасти турбины, тем самым и обеспечивается передача усилия.
Если бы конструкция включала только эти два колеса, то гидротрансформатор не отличался бы от гидромуфты, у которой вращающий момент на обеих составляющих практически одинаков.
Но в задачу гидротрансформатора входит не только передача усилия, а и его изменение.
Так, при старте необходимо обеспечить увеличение крутящего момента на ведомом колесе (при начале движения), а во время равномерного движения – исключить так называемое «проскальзывание».
Для выполнения этих функций в конструкции предусмотрены реактор и механизм блокировки.
Реактор представляет собой еще одно лопастное колесо, но значительно меньшего диаметра и располагается оно между турбиной и насосом, с последним реактор связан посредством обгонной муфты.
В задачу этого элемента входит увеличение скорости потока жидкости, что и приводит к повышению крутящего момента.
Работает реактор так: при возникновении большой разницы между основными колесами гидротрансформатора, обгонная муфта блокирует реактор, не давая ему вращаться (из-за этого еще одно название составляющей – статор).
При этом его лопасти, имеющие специальную форму, увеличивают скорость движения потока жидкости, попадающего на него после прохождения турбинного колеса, и направляют его снова на насос.
Таким образом реактор значительно повышает крутящий момент, необходимый для создания достаточного усилия при начале движения.
При равномерном движении гидротрансформатор блокируются, то есть в нем появляется жесткая связь, и делает это используемый в конструкции механизм блокировки.
Ранее в АКПП эта составляющая срабатывала только на повышенных скоростях движения. Сейчас же, используемые электронные системы управления коробкой блокируют гидротрансформатор практически на всех ступенях.
То есть, как только крутящий момент для определенной передачи подходит к требуемым параметрам, механизм срабатывает.
При смене ступени он отключается, чтобы обеспечить плавность переключения и снова включается. Тем самым исключается вероятность «проскальзывания» гидротрансформатора, что повышает его ресурс, снижает потери усилия и уменьшает потребление топлива.
Примечательно, что механизм блокировки, по сути, представляет собой фрикционное сцепление, и работает он по тому же принципу. То есть в конструкции имеется фрикционный диск, который закреплен на турбине.
В отключенном состоянии блокировочного механизма этот диск находится в отжатом состоянии. При включении же блокировки, фрикционы прижимаются к корпусу гидротрансформатора, тем самым и достигается жесткая передача крутящего момента от мотора на КПП.
В целом, если рассмотреть функционирование гидротрансформатора, то существует три режима его работы:
- Трансформация (включается, когда требуется повышение крутящего момента для создания большего усилия. В этом режиме работает реактор, обеспечивая повышение скорости движения потока);
- Гидромуфта (в этом режиме реактор не задействован и вращающий момент на ведущем и ведомом колесе практически одинаков);
- Блокировка (турбина жестко связана с корпусом для уменьшения потерь на «проскальзывание»).
Используемая для управления работой гидротрансформатора электронная система обеспечивает очень быструю смену режима его работы, подстраивая функционирование этого элемента под возникающие условия.
Гидромуфты подразделяются на регулируемые и замкнутые.
Регулируемые гидромуфты предназначены, как правило, для относительно неглубокого (до 30-40%) регулирования частоты вращения ведомого вала привода. Наиболее экономичным такое регулирование является лишь для машин, у которых мощность нагрузки в процессе работы изменяется пропорционально кубу частоты вращения турбины, т.е. N2=(i3) Nн (Nн- номинальная мощность при полной скорости и n1=const.). К таким машинам относятся мощные (до15тыс.квт) центробежные насосы, турбогенераторы, вентиляторы. Менее экономичным регулирование с помощью гидромуфт является в случае, когда мощность изменяется пропорционально квадрату частоты вращения ,т.е. N2=(i2) Nн. Максимальные потери мощности Nпот. в первом случае составляют Nпот.= 0,148 Nн при i=0,666, а во втором случае 0,25 Nн- при i=0,5. Для многих лопастных машин регулирование гидромуфтой имеет ряд преимуществ по сравнению с другими способами регулирования скорости.
Рекомендации по обслуживанию и эксплуатации ГДТ
Применение «бублика» в трансмиссии упрощает и облегчает управление автомобилем даже в тяжелых условиях. Однако, АКПП с гидротрансформатором при сравнении с МКПП проигрывает по параметрам:
- низкий КПД без применения блокировки;
- расход топлива на 10% выше;
- малый диапазон изменения крутящего момента «бублика» и необходимость установки планетарного редуктора;
- сложность конструкции и обслуживания;
- высокая стоимость.
Чтобы стать постоянным клиентом мастерской по ремонту гидротрансформатора АКПП, нужно соблюдать два правила:
- как можно чаще вжимать педали газа и тормоза в пол, чтобы быстрее истереть фрикцион муфты блокировки в абразивную пудру, загрязнить масло и ускорить износ автомата;
- никогда не менять жидкость, особенно, если она черная, горячая, а уровень выше или ниже нормы.
Если серьезно, то ГДТ выходит из строя медленно и незаметно для водителя. Явный сигнал неисправности — течь масла в месте соединения гидротрансформатора и двигателя. Другие признаки неполадки могут проявляться уже на стадии распространения «заболевания» по все АКПП. Поэтому, если автомобиль ведет себя странно: медленно разгоняется, увеличил расход топлива, при движении появляется вибрация — нужно отправить машину на проверку.
Перед самостоятельным осмотром коробки нужно изучить устройство и особенности конкретной модели АКПП. Чтобы добраться до гидротрансформатора, придется снимать всю коробку. Без распила и разборки отремонтировать «бублик» не получится. Промывка гидротрансформатора растворителями может повредить колесам и «разъесть» сальники.
После ремонта и сборки АКПП необходима балансировка гидротрансформатора. Не все сервисы проводят эту операцию, поскольку она трудоемка и проблематична. ГДТ работает на высоких оборотах — дисбаланс или нарушение соосности валов выведут из строя не только «бублик», но и всю АКПП.
Срок службы современного гидротрансформатора АКПП составляет 150 — 200 000 км. Ресурс сократится до 100 000, если менять масло. Фрикционы истираются к 120 — 150 000 км и тоже требуют замены. После 200 000 км «бублику» с регулируемым проскальзыванием прописан плановый капремонт.
Как пользоваться автоматической коробкой передач
Слесари СТО утверждают, что чаще всего поломки АКПП появляются после небрежного использования и несвоевременной замены масла.
Режимы работы
На рычаге расположена кнопка, которую водитель должен нажать, чтобы выбрать нужный режим. На селекторе предусмотрено несколько возможных положений:
- паркинг (P) — ведущая ось блокируется вместе с валом коробки, режим принято использовать в условиях продолжительной стоянки либо прогрева;
- нейтраль (N) — вал не фиксируется, машину можно аккуратно буксировать;
- драйв (D) — движение автотранспорта, передачи подбираются автоматически;
- L (D2) — машина передвигается в сложных условиях (бездорожье, крутые спуски, подъемы), максимальная скорость 40 км/ч;
- D3 — снижение передачи при небольшом спуске или подъеме;
- реверс (R) — задний ход;
- овердрайв (O/D) — если кнопка активна, то при наборе большой скорости включается четвертая передача;
- PWR — режим «спорт», обеспечивает улучшение динамических показателей за счет повышения передач на высоких оборотах;
- normal — плавная и экономичная езда;
- manu — передачи включаются непосредственно водителем.
Переключение режимов работы АКПП.
Как заводить машину на автомате
Стабильная работа АКПП зависит от правильного запуска. Чтобы оградить коробку от неграмотного воздействия и последующего ремонта, разработано несколько степеней защиты.
При запуске двигателя рычаг селектора должен располагаться на значении «P» либо «N». Эти положения позволяют защитной системе пропустить сигнал о старте двигателя. Если рычаг будет находиться в другом положении, то водитель не сможет включить зажигание либо же после оборота ключа ничего не произойдет.
Чтобы правильно начать движение, лучше использовать парковочный режим, поскольку при значении «P» у машины блокируются ведущие колеса, что не позволяет ей скатиться. Применение нейтрального режима позволяет осуществить экстренную буксировку транспорта.
Большинство автомобилей с АКПП запускаются не только при правильном положении рычага, но и после выжимания тормозной педали. Эти действия препятствуют случайному откату автомобиля, если рычаг установлен на значении «N».
Как ездить на автоматической КПП и чего нельзя делать
Чтобы добиться длительной службы КПП, надо верно ставить режим в зависимости от текущих условий перемещения. Чтобы правильно эксплуатировать автомат, необходимо соблюдать следующие правила:
- дождаться толчка, который оповещает о полном включении передачи, только потом надо начать движение;
- при буксовании необходимо переходить на пониженную передачу, а при работе тормозной педалью — следить за тем, чтобы колеса вращались медленно;
- использование разных режимов позволяет осуществлять торможение двигателем и ограничивать разгон;
- во время буксирования автотранспорта с включенным мотором должен соблюдаться скоростной режим до 50 км/ч, причем максимальное расстояние должно быть менее 50 км;
- нельзя буксировать другой автомобиль, если он тяжелее машины с АКПП, при буксировке надо ставить рычаг на «D2» или «L» и ехать не более 40 км/ч.
Чтобы не попасть на дорогостоящий ремонт, водители не должны:
- передвигаться в парковочном режиме;
- спускаться на нейтральной передаче;
- пытаться завести мотор с толчка;
- ставить рычаг на «P» или «N», если нужно ненадолго остановиться;
- включать задний ход с положения «D» и до полного прекращения движения;
- на склоне переключаться в режим парковки до постановки автомашины на ручник.
Как эксплуатировать АКПП зимой
В холодных погодных условиях часто возникают проблемы с машинами. Для сохранения ресурса агрегата в зимние месяцы водителям следует придерживаться таких рекомендаций:
- После включения двигателя в течение нескольких минут прогревать коробку, а перед движением — нажать и держать педаль тормоза и попереключать все режимы. Эти действия позволяют трансмиссионному маслу быстрее прогреться.
- На протяжении первых 5-10 км не нужно резко разгоняться и буксовать.
- Если надо выехать со снежной или ледяной поверхности, то следует включать пониженную передачу. Поочередно надо работать обеими педалями и аккуратно выезжать.
- Раскачку делать нельзя, поскольку она пагубно сказывается на гидравлическом трансформаторе.
- Сухое дорожное покрытие позволяет переходить на пониженные передачи и включать полуавтоматический режим, чтобы прекращать движение торможением двигателя. Если спуск скользкий, то надо пользоваться педалью тормоза.
- На ледяном подъеме запрещается резко нажимать педаль и допускать пробуксовку колес.
- Чтобы аккуратно выйти из заноса и стабилизировать машину, рекомендуется кратковременно включать нейтральный режим.
Достоинства и недостатки
Прежде чем мы начнем изучать устройство гидротрансформаторов, давайте разберемся, почему их вообще стали применять. Трансмиссия с жестким соединением первичного вала с двигателем имеет серьезный недостаток: в определенных режимах работы двигателя на трансмиссию приходятся сильные нагрузки, которые становятся причиной ускоренного износа деталей. Трансформатор решил эту проблему. Но у него есть и другие достоинства. Среди них:
- Обеспечение плавного троганья с места;
- Потенциальная возможность увеличения крутящего момента от автомобильного двигателя;
- Устройство практически не нуждается в обслуживании.
Где есть достоинства, там есть и недостатки. Главная особенность гидротрансфортматора – передача момента посредством движения жидкости – является и его главным недостатком. Вот почему автоконцерны продолжают работать над его улучшением:
- Устройство имеет относительно невысокий КПД;
- Оно пагубно сказывается на динамике автомобиля;
- Стоимость устройства довольно высока.
Так как на раскручивание жидкости в гидротрансформаторе требуется время и мощность, динамика автомобиля может пострадать. Кроме того, проектирование и сборка гидротрансформатора требует больших экспертных мощностей и денежных трат. Автомобиль, оснащенный АКПП с трансформатором стоит дороже моделей с наиболее простой механической трансмиссией. Но с учетом того, что устройтсво не только делает работу трансмиссии более плавной, но и увеличивает ее эксплуатационный ресурс, денежные траты окупаются.
Признаки неисправности
Признаков серьезных неисправностей гидротрансформатора АКПП может быть несколько. Все они свидетельствуют о скорой поломке ГДТ и выходе из строя.
Признак. Слышен шум, напоминающий биение металлического предмета. При нагрузке он пропадает.
Проблема и решение. Износ подшипников, находящихся между турбиной и насосом. Чтобы удалить эти симптомы и устранить поломку, нужно разобрать гидротрансформатор и заменить подшипники.
Признак. Вибрация АКПП во время разгона выше 60 км/ч или движения автомобиля по ровной поверхности на большой скорости.
Проблема и решение. Загрязнения фильтрующего устройства. Потеря функциональных свойств смазывающего средства. Необходимо сделать полную замену ATF в АКПП и установить новый фильтр. Вполне возможно, что наступило масляное голодание. Необходимо проверить поддон АКПП на потеки.
Признак. Нет движения ни назад, ни вперед.
Проблема и решение. Оборвалось соединение турбины с валом АКПП. Для решения этой неисправности понадобится замена гидротрансформатора. В редких случаях можно обойтись просто заменой шлицевого соединения.
Признак. Автомобиль не может разогнаться и набрать необходимую скорость за короткое время.
Проблема и решение. Вышла из строя обгонная муфта. Необходимо разобрать гидротрансформатор и заменить ее.
Признак. Перегрев масла. АКПП дергается и пинается.
Проблема и решение. Например, при проблемах износа фрикционной накладки поршня блокировки гидротрансформаторного тормоза очень трудно заметить неправильную работу устройства. Из-за этого масло часто перегревается до 140 градусов Цельсия. Перегретая смазка вызывает уничтожает резину сальников ГДТ. Масло начинает течь.
В продолжение этой неисправности является полный износ накладки фрикциона. Ее клееная часть отрывается и путешествует по АКПП. Затем она оседает и приклеивается в неположенных местах вызывая засор. Засор мешает свободной циркуляции масла. Падает давление.
Поэтому и эксперты, и опытные механики на СТО просят автовладельцев проводить регулярное техническое обслуживание. При износе фрикциона — неисправность незаметна. Но в последствие она приводит к полной замене АКПП. Хотя на первоначальных этапах можно было обойтись только сменой накладки фрикциона.
К нечастым поломкам ГДТ относятся следующие проблемы:
- разрушение лопастей турбины и насосного колеса. Приводит к поломке ГДТ. Требуется его полная замена. Проблема определяется только после вскрытия;
- клин обгонной муфты;
- разблокировка обгонной муфты;
- перегрев с разрушением ступицы.
Читать
Какая коробка передач лучше автомат или механика: плюсы и минусы
Перегрев трансмиссионной жидкости может вызывать быструю потерю функциональных свойств.
Признак. Запах горелой пластмассы, распространяющийся в салоне. Частая проблема на тойотах Камри 50.
Проблема и решение. Забитый радиатор является проблемой в этом случае. Рекомендуется снять и прочистить его. Заменить масло и фильтрующее устройство – обязательно.
Признак. Пинки, задержки во время переключения скоростей зимой.
Причина и решение. Этому может способствовать запуск на холодную. Чтобы избежать этих симптомов у автомата нужен прогрев АКПП зимой. При температуре ниже 0, автовладелец должен прогреть АКПП до рабочей температуры в 70 градусов по Цельсию и только потом начинать движение.
На автомобилях старого года выпуска выходит из строя сама кулиса. Она стопорится в одном положении. Здесь понадобится замена селектора и ручки переключения скоростей. Это можно сделать без снятия автоматической коробки.
Причины неисправности
Гидротрансформатор — устройство не очень сложное, однако в процессе эксплуатации автоматической трансмиссии он изнашивается и постепенно выходит из строя. Перечислим, какие именно системы могут поломаться, и по каким причинам.
Фрикционные пары
Внутри гидротрансформатора есть так называемая блокировка, которая, по сути является элементом автоматического сцепления. Механически работает она схоже с классическим сцеплением МКПП. Соответственно, имеет место износ фрикционных дисков, их отдельных пар, либо всего комплекта. Кроме этого, элементы износа фрикционных дисков (металлическая пыль) загрязняют трансмиссионную жидкость, из-за чего могут забиться каналы, по которым проходит жидкость. Из-за этого падает давление в системе, а также страдают другие элементы автоматической трансмиссии — гидроблок, радиатор охлаждения и прочие.
Лопатки лопастей
Металлические лопатки под воздействием высоких температур и наличия в трансмиссионной жидкости абразива также со временем изнашиваются, и добавляют в масло еще больше металлической пыли. Из-за этого снижается эффективность работы гидротрансформатора, снижается общее давление жидкости в системе трансмиссии, ну а из-за грязной жидкости растет перегрев системы, изнашивается гидроблок, увеличивается нагрузка на всю систему. В самых худших случаях возможна полная поломка одной или нескольких лопастей на крыльчатке.
Разрушение сальников
Под воздействием горячей и загрязненной жидкости АТФ увеличивается нагрузка на резиновые (пластмассовые) сальники-уплотнители. Из-за этого страдает герметичность системы, и возможна утечка трансмиссионной жидкости.
Блокировка гидротрансформаторов
На старых коробках-автомат блокировка (сцепление), у которых управление им было механическое, непосредственно блокировка срабатывала реже, только на высших передачах. Поэтому ресурс таких коробок был выше, а интервал по замене трансмиссионной жидкости — больше.
На современных же машинах блокировка срабатывает, то есть, гидротрансформатор блокируется на всех передачах, а специальный клапан регулирует силу его прижатия. Так, при плавном разгоне блокировка включается частично, а при резком — она включается практически сразу. Делается это для снижения потребления топлива, а также для увеличения динамических характеристик машины.
Одна другая сторона медали в данном случае заключается в том, что в таком режиме работы значительно возрастает износ закладок блокировки. В том числе быстро изнашивается (загрязняется) трансмиссионная жидкость, в ней появляется много мусора. С увеличением пробега плавность блокировки падает, а при разгоне или при обычной езде машина начнет немного дергаться. Соответственно, масло в АКПП нужно менять примерно на 60 тысячах километров пробега, поскольку в зону риска попадает уже вся система автоматической трансмиссии.
Износ подшипников
В частности, опорных и промежуточных, между турбиной и насосом. При этом обычно слышится хруст или свист, издаваемый непосредственно упомянутыми подшипниками. Особенно хрустящие звуки слышны при наборе скорости, однако при выходе машины на стабильную скорость и нагрузку звуки обычно пропадают, если подшипники не изношены до критического состояния.
Потеря свойств трансмиссионной жидкости
Если жидкость ATF находится в системе трансмиссии уже давно, то она чернеет, густеет, в ее составе появляется много мусора, в частности, металлической крошки. Из-за этого страдает и гидротрансформатор. Особенно критична ситуация, когда жидкость не только теряет свои свойства, но и падает ее общий уровень (количество в системе). В таком режиме гидротрансформатор будет работать в критическом режиме, при критических температурах, что значительно снижает его общий ресурс.
Обрыв соединения с валом АКПП
Это критическая поломка, которая, правда, случается крайне редко. Заключается она в том, что происходит механический обрыв шлицевого соединения турбинного колеса с валом коробки-автомат. В этом случае движение автомобиля в принципе невозможно, поскольку от двигателя на АКПП крутящий момент не передается. Ремонтные работы заключаются в замене вала, восстановлении шлицевого соединения либо же полной замене гидротрансформатора в критических случаях.
Поломка обгонной муфты
Внешним признаком поломки обгонной муфты АКПП будет ухудшение динамических характеристик машины, то есть, она будет хуже разгоняться. Однако без дополнительной диагностики невозможно точно установить, что виновата в этом именно обгонная муфта.
Как действует гидротрансформатор АКПП
Передача крутящего момента между валами двигателя и трансмиссии осуществляется за счет движения масла в насосе и ведомой турбине. Насос нагнетает давление в гидромеханическую систему и стимулирует вращение центростремительной турбины. На лопатки этой турбины подается рабочая жидкость.
Трансмиссионное масло является не только рабочей средой для трансформатора, но и охлаждающей жидкостью для деталей АКПП и смазкой для контактирующих поверхностей. Реактор устройства, который располагается между насосом и турбиной, регулирует увеличение крутящего момента и возвращение масла с турбины на насосное кольцо. При большой разнице моментов колес реактор блокируется с помощью муфты, которая соединена с насосом.
Блокировка устройства позволяет напрямую передавать крутящий момент с коленчатого вала на трансмиссионный. Как только скорость их вращения рассинхронизируется, трансформатор снова включается в систему переключения.
Устройство гидротрансформатора коробки-автомат
Гидравлический трансформатор состоит из следующих деталей:
- насос и насосное колесо — помпа сохраняет нужное давление в системе, а колесо насоса сопряжено с коленчатым валом;
- турбина с лопатками — прочно соединяется с валом, передающим усилие мотора на АКПП;
- реакторное колесо (реактор) — сопряжено с турбинным и насосным колесом;
- блокировочная муфта — останавливает работу трансформатора для прямого сцепления коленвала и трансмиссии;
- муфта свободного хода (обгонная) — вращает реактор в направлении, противоположном движению других колес.
Все детали трансформатора заключены в герметичную систему, а рабочая жидкость движется по замкнутому циклу. Если в корпусе устройства образуется течь, то рабочее давление падает, что сказывается на разгонных характеристиках автомобиля и состоянии фрикционных дисков АКПП.
Принцип работы гидротрансформатора
Составные части гидротрансформатора АКПП.
Принцип работы гидромеханического трансформатора основан на передаче энергии и крутящего момента через рециркуляцию рабочей жидкости (ATF) между лопастями насосного кольца и лопатками турбины. Компоненты связаны между собой опосредованно, через движение масла и обгонную муфту.
Кольцо насоса вращается в такт с коленчатым валом мотора, перемещая масло между своими лопастями. Жидкость одновременно перемещается вдоль поверхности лопастей и вращается относительно центральной оси устройства. После того как насосное кольцо выбрасывает масло, оно попадает на лопатки турбины. Давление на лопатки заставляет турбину вращаться.
Сложная конфигурация лопаток позволяет создать завихрения, которые ускоряют движение потока и увеличивают крутящий момент колеса. После передачи крутящего момента на трансмиссионный вал поток направляется на статор (реактор), а затем возвращается на лопасти насоса.
Статор может регулировать скорость потока жидкости в замкнутой системе. Если он не препятствует прохождению масла, то конструкция превращается из трансформатора в муфту. Гидромуфта является одним из основных режимов работы гидротрансформатора АКПП.
Работа системы гидравлического преобразователя контролируется электронным блоком управления (ЭБУ). Для этого внутри тора установлены датчики, измеряющие давление рабочей жидкости, скорость вращения лопаток и другие параметры.
Рост скорости циркуляции автоматически приводит к увеличению крутящего момента турбинного колеса. Процесс продолжается до достижения равновесия между усилием сопротивления и скоростью потока.
Гидротрансформатор и коробка передач.
При блокировке трансформатора подача топлива в цилиндры приостанавливается, что позволяет сэкономить горючего. Движение автомобиля осуществляется «накатом», поэтому при выключенном преобразователе можно добиться торможения двигателем.
В зависимости от модели машины и алгоритмов, заложенных в ЭБУ, блокировочный механизм может запускаться как при высоких скоростях (не менее 60-70 км/ч), так и при низких (около 20 км/ч).
За счет опосредованного контакта деталей гидротрансформатор является эффективным амортизирующим устройством.
Если этот узел блокирован, а двигатель и АКПП находятся в жесткой сцепке, то коробка-автомат получает не только 100% передаваемой энергии, но и ударные нагрузки, которые негативно сказываются на ее состоянии.
«Бублик» в коробке автомат: что это такое
Итак, «бубликом» в обиходе принято называть гидротрансформатор. Такое название устройство получило благодаря своей форме. Как правило, ГДТ устанавливается в паре с «клаccическими» гидромеханическими АКПП и вариаторами CVT. Также изредка данный элемент ставится в паре с преселективными коробками.
Чтобы было понятно, гидротрансформатор фактически является сцеплением коробки-автомат. Основной его задачей является преобразование и передача крутящего момента от двигателя на коробку. При этом в устройстве нет дисков сцепления (по аналогии с МКПП), которые взаимодействуют между собой путем замыкания и прямого контакта.
Если просто, «бублик» АКПП работает подобно гидравлическому редуктору. ГДТ (гидромуфта) снижает обороты, повышает крутящий момент с коэффициентом трансформации до 2.4. При этом энергия передается через поток трансмиссионной жидкости ATF (трансмиссионного масла АКПП). Результат — мягкое включение передач, отсутствие ударных нагрузок.
В двух словах, коленвал двигателя связан с насосным колесом. Это колесо внутри ГДТ разгоняет трансмиссионное масло, после чего происходит его перенаправление на турбинное колесо. Турбинное колесо связано с АКПП. Масло раскручивает турбинное колесо, после чего перенаправляется обратно на насосное колесо.
Также жидкость попадает на лопатки направляющего колеса-реактора. Это колесо ускоряет поток жидкости и перенаправляет его в сторону вращения. В результате поток жидкости ускоряется до момента выравнивания скорости вращения насосного и турбинного колес.
В этот момент гидротрансформатор начинает работать в режиме гидромуфты, когда крутящий момент уже не преобразуется, колесо-реактор крутится свободно, не влияя на поток жидкости.
Чем большей оказывается разница в скорости вращений насосного и турбинного колес, тем большее ускорение получает поток жидкости ATF. Однако минусом является высокий нагрев. От нагрева КПД «бублика» падает. Если же происходит выравнивание скорости вращения колес, передавать кутящий момент через жидкость уже нет острой необходимости (с учетом потерь).
По этой причине ГДТ получили элементы фрикционного сцепления, то есть передача момента основана на трении. Такой режим называется блокировка гидротрансформатора, когда происходит соединение входного и выходного валов, то есть передача момента идет напрямую.
На начальном этапе блокировка срабатывала в автоматическом режиме (к срабатыванию приводило давление рабочей жидкости). В дальнейшем АКПП получили электронное управление, а за блокировку ГДТ стал отвечать отдельный клапан.
В любом случае, основной задачей стало решение соединять валы напрямую, исключая передачу момента через масло. Также несколько изменились и функции фрикционных накладок блокировки. Подобно сцеплению механической коробки, при разгоне автомобиля с АКПП фрикционы блокировки ГДТ немного смыкаются, слегка пробуксовывают, при этом момент передается на коробку более эффективно, без сильных потерь.
При этом блокировка гидротрансформатора в современных АКПП происходит как можно раньше, чтобы повысить КПД. Получается, «бублик» сегодня эффективно объединяет в себе функции гидравлического редуктора и обычного механического сцепления.
Как может показаться на первый взгляд, решение оптимальное. Однако вполне очевидно, что высокий нагрев жидкости ATF никуда не делся (особенно в паре с мощными ДВС), а наличие фрикционных (трущихся) элементов блокировки в конструкции говорит о том, что они подвержены износу.
Именно по этой причине гидравлический узел, который кажется очень надежным, на самом деле испытывает значительные нагрузки, быстро изнашивается и вполне может выйти из строя при определенных условиях.
Другими словами, в гидротрансформаторе вполне могут возникать преждевременные и неожиданные поломки. Специалисты также не без оснований считают «бублик» слабым звеном в устройстве АКПП.