Водородный двигатель для автомобиля, как избавиться от нефтяной зависимости

Принцип работы

Водород может использоваться для обогрева домов или в качестве топлива для автотранспорта. В первом случае можно добиться хорошего КПД благодаря высокому показателю теплопроводности вещества. Во время реакции окисления один атомами кислорода соединятся с двумя водородными, что приводит к образованию воды. Одновременно выделяется примерно в 3 раза больше тепла в сравнении со сжиганием природного газа.

Среди всех известных сегодня науке источников энергии, именно это вещество следует считать наиболее перспективным — мировой океан планеты дна две третьих состоит из этого вещества, а во Вселенной по распространению конкуренцию водороду может составить лишь гелий. таким образом, двигатель, работающий на этом топливе, можно считать лучшим.

В результате образуется газ, имеющий формулу HHO с показателем теплотворной способности в 121 МДж/кг. Он был назван в честь физика Ю. Брауна и при горении не выделяет никаких вредных веществ. Особенность вещества заключается в том, что для его применения можно использовать те же емкости, которые сегодня применяются в качестве котлов для метана либо пропана. Однако необходимо предпринять дополнительные меры безопасности, так как газ Брауна является сильной гремучей смесью.

Водородный генератор для автомобиля состоит из двух основных элементов:

  • электролизера.
  • резеэвуара.

Но использование классического гидролизера является нерентабельным, так как предполагает значительный расход электрической энергии. Однако выход из сложившейся ситуации был найден — токи определенной частоты. В результате молекулы воды входят в резонанс с электроимпульсами и расщепляются на составляющие. Собрав такое устройство можно получать топливо из воды своими руками.

Какой именно металл следует использовать?

Этот вопрос спорный. Так, во многих – в том числе весьма авторитетных – источниках говорится, что для водородного отопления необходимо использовать лишь редкие металлы. В действительности это не совсем верно, так как вполне можно использовать и нержавеющую сталь, о чем мы уже говорили выше. Хотя в идеале это должна быть ферримагнитная сталь. Отличается она тем, что не притягивает к себе частички не нужного мусора. Также отметим, что при выборе металла ориентироваться лучше все же на «нержавейку», которая не подвержена процессу окисления.

Как видим, соорудить водородный котел не так сложно, как кажется. Необходимо лишь правильно подобрать расходные материалы и тщательным образом изучить схему отопительной системы такого типа. Установив все необходимое оборудование, произведите проверку, дабы убедиться в том, что оно действительно качественное и достаточно эффективное.

Как установить водородный котел?

На данный момент многие предпочитают самостоятельно производить водородные генераторы для своих отопительных систем. И в этом нет ничего удивительного, ведь «магазинные» аналоги не только очень дорого стоят, но и обладают не слишком высоким КПД. А вот если этот прибор сделать своими руками, то эффективность его будет на порядок выше.

Существует несколько вариантов того, как собрать генератор, работающий на водороде. Но в любом случае для его изготовления в домашних условиях потребуются следующие расходные материалы.

12-вольтный источник энергии.
Несколько трубок, выполненных из нержавеющей стали и имеющих различный диаметр.
Резервуар, в котором будет расположена конструкция.
ШИМ-регулятор

Важно, чтобы его мощность составляла как минимум 30 ампер.. Это основные комплектующие, из которых обычно состоят самодельные водородные генераторы. Кроме того, не забывайте о резервуаре под дистиллированную воду – его наличие также обязательно

Воду необходимо подавать в герметичную конструкцию с находящимся внутри диалектиком. В этой же конструкции будет располагаться комплект, сделанный из пластин «нержавейки», примыкающих одна к другой посредством изоляционного материала. Важно, чтобы 12-вольтное напряжение подавалось именно на эти пластины. Если все будет сделано правильно, то при подаче напряжения вода распадется на 2 газообразные элемента

Кроме того, не забывайте о резервуаре под дистиллированную воду – его наличие также обязательно. Воду необходимо подавать в герметичную конструкцию с находящимся внутри диалектиком. В этой же конструкции будет располагаться комплект, сделанный из пластин «нержавейки», примыкающих одна к другой посредством изоляционного материала

Важно, чтобы 12-вольтное напряжение подавалось именно на эти пластины. Если все будет сделано правильно, то при подаче напряжения вода распадется на 2 газообразные элемента

Это основные комплектующие, из которых обычно состоят самодельные водородные генераторы. Кроме того, не забывайте о резервуаре под дистиллированную воду – его наличие также обязательно. Воду необходимо подавать в герметичную конструкцию с находящимся внутри диалектиком. В этой же конструкции будет располагаться комплект, сделанный из пластин «нержавейки», примыкающих одна к другой посредством изоляционного материала

Важно, чтобы 12-вольтное напряжение подавалось именно на эти пластины. Если все будет сделано правильно, то при подаче напряжения вода распадется на 2 газообразные элемента

Обратите внимание! Более эффективной в этом плане является использование постоянного тока (он обязан иметь конкретную частоту), производимого генератором типа ШИМ. В таком случае импульсный ток (либо же переменный) будет заменен постоянным. В результате этого эффективность оборудования существенно повысится

В результате этого эффективность оборудования существенно повысится.

Водородная вода в домашних условиях

Теоретически создать водородный генератор своими руками можно и в домашних условиях. Но для этого нужно обладать специальными знаниями, иметь соответствующее оборудование.

Есть два варианта:

  1. Сатурация – процесс обогащения воды молекулярным кислородом. По принципу производства газированных напитков.
  2. Электролизация – процесс пропускания тока через жидкую среду. Суть методики – в реакции воды с металлами.

Принцип работы домашнего генератора представлен на изображении:

Самый простой электролизер состоит из:

  • толстостенной емкости (реактора);
  • металлических электродов, подключенных к электросети;
  • водяного затвора;
  • газоотводной трубки;
  • горелки.

Как сделать водородный генератор:

  1. Погрузите металлические электроды в емкость с водой, подведите напряжение. Улучшит реакцию добавление в воду соли (или щелочи, или кислоты).
  2. Произойдет реакция, в результате которой возле катода (минуса) начнет выделяться водород, возле анода (плюса) – кислород.
  3. Газы смешиваются и поступают в трубку, по которой далее отправляются в водяной затвор (гидрозатвор). Назначение гидрозатвора – недопущение вспышки в реакторе, отделение водяного пара.
  4. Опасный газ из второй емкости передается на горелку, где перегорает. В результате образуется вода.

Создание водородного генератора на практике происходит так:

  1. Подготовьте все необходимое: 2 бутылки с широкими горлышками из стекла, крышки к ним, систему для капельницы, 20 саморезов, 2 плоские палочки из дерева, провода.
  2. Соедините деревянные палочки саморезами концами в разные стороны. Спаяйте головки саморезов и подведите к ним провода. Получатся импровизированные электроды.
  3. В продырявленную крышку от бутылки протяните трубку от капельницы и провода. Загерметизируйте клеевым пистолетом.
  4. Электроды поместите в емкость и закрутите крышку.
  5. Через 2 отверстия в другой крышке протяните трубки от капельницы. Налейте в бутылку воду, закрутите крышку.
  6. В реактор налейте воду с добавлением соли.
  7. Включите источник питания (постоянного тока, например, аккумулятор от авто, сетевой адаптер).
  8. Как только появились пузырьки, значит, реакция началась. Отрегулируйте напряжение. Подожгите выходящий газ.

Подробнее о том, как собственноручно сделать водородный генератор, смотрите на видео:

Но есть ли смысл озадачиваться самостоятельным созданием ионизатора воды своими руками, когда проще и дешевле купить готовый?

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».


Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.


Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.


Конструкция диафрагменного электролизера

Пояснение:

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Водородный двигатель: типы, устройство,принцип работы

ТИПЫ ВОДОРОДНЫХ ДВИГАТЕЛЕЙ

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. 

Перспективы

Использование такого газа как водород потенциально может открыть невероятные большие перспективы. Причём здесь речь идёт не только про автомобильный двигатель внутреннего сгорания, работающий на водороде, но и про целый ряд других сфер применения. В их числе авиация, железнодорожный транспорт, морские суда и пр. Помимо применения в ДВС, водород также может использоваться для питания и работы вспомогательной техники, механизмов и разного оборудования.

Уже сейчас ведущие автопроизводители уделяют большое внимание возможности внедрить в массовое производство водородные ДВС. Среди них такие гиганты как Volkswagen, General Motors, Toyota, BMW и пр

В настоящее время существуют автомобили, под капотом которых находятся водородные силовые установки. При этом они отлично функционируют, мало чем уступают традиционным ДВС на бензине и дизтопливе, а также обладают некоторыми существенными преимуществами.

Чтобы говорить о серьёзных перспективах и массовом внедрении водорода, требуется решить хотя бы несколько главных недостатков. Эксперты уверены, что при наличии способа уменьшить стоимость газа, а также при постройке большего количества АЗС и обучении кадров для обслуживания водородных моторов, множество таких машин обязательно станут нормой на дорогах.

Технологии-конкуренты

Автопроизводители пока не могут или не хотят в полной мере сконцентрироваться на водородных технологиях, поскольку у неё есть ряд серьёзных конкурентов.

Можно выделить следующие виды моторов, которые не дают водородным ДВС и топливным элементам на водороде развиваться, совершенствоваться и массово выходить на рынок.

  1. Гибридные установки. Это автомобили, способные использовать одновременно несколько источников энергии. Зачастую в машину внедряют обычный ДВС и электромотор. Также бывают варианты, когда обычный двигатель на бензине работает вместе с узлом, питающимся сжатым воздухом.
  2. Электрокары. Сейчас активно развиваются и распространяются полностью электрические авто. Это машины, которые двигаются за счёт работы одного или нескольких электромоторов. Они питаются от специальных аккумуляторов или топливных элементов. ДВС здесь не используют.
  3. Жидкий азот. Вещество помещается в специальные ёмкости. Сам процесс работы выглядит так. Топливо нагревается за счёт работы специального механизма. Это приводит к испарению и образованию газа высокого давления. Этот газ идёт в двигатель, где воздействует на поршни или роторы, передавая свою энергию. Пока такие авто не получили широкого распространения.
  4. Сжатый воздух. Здесь основой всей силовой установки выступает пневмодвигатель. Пневматический привод заставляет машину двигаться. Топливовоздушная смесь заменена на сжатый воздух. Эта система является частью современных гибридных автомобилей.

У водорода достаточно много конкурентов. И в настоящий момент самым главным соперником справедливо считается электродвигатель.

Насколько сильно ситуация изменится в ближайшие несколько лет, говорить сложно. О каких-то резких изменениях и открытиях говорить вряд ли стоит. Но есть вероятность того, что через 10-20 лет водород станет куда более эффективным и доступным. Тем самым начнут появляться серийные водородные автомобили в большом количестве. Примерно так сейчас обстоят дела с электрокарами.

Рекомендации по изготовлению

Выбор материалов

Чаще всего домашние мастера сталкиваются с проблемой выбора электродов. С созданием топливной ячейки ситуация более простая и сегодня существует два основных типа генераторов водорода — «мокрый» и «сухой». Для создания первого можно использовать любой контейнер, имеющий достаточный запас прочности и газонепроницаемости. Оптимальным выбором можно считать корпус от аккумулятора старого образца для легковой машины.

Лучшими электродами будут пластины (трубки) из нержавейки. В принципе можно использовать и черный металл, но он быстро подвергается коррозии и такие электроды требуют частой замены. Совершенно иначе дело обстоит при использовании высокоуглеродистых сплавов, легированных хромом. Примером такого материала является нержавейка марки 316L.

При использовании трубок, они должны подбираться так, чтобы при установке одного элемента в другой между ними был обеспечен зазор величиной не более одного миллиметра

Не менее важной деталью генератора водорода для автомобиля является ШИМ-генератор. Именно благодаря правильно собранной электросхеме можно регулировать частоту тока, а без этого добывать водород не представляется возможным. Для создания водного затвора (бабблера) можно использовать любую емкость, обладающую достаточным показателем герметичности

При этом ее желательно оснастить крышкой, которая плотно закрывается, но при возгорании ННО внутри сразу будет сорвана. Для предотвращения возврата газа Брауна в топливную ячейку, рекомендуется установить отсекатель между водным затвором и электролизером

Для создания водного затвора (бабблера) можно использовать любую емкость, обладающую достаточным показателем герметичности. При этом ее желательно оснастить крышкой, которая плотно закрывается, но при возгорании ННО внутри сразу будет сорвана. Для предотвращения возврата газа Брауна в топливную ячейку, рекомендуется установить отсекатель между водным затвором и электролизером.

Сборка устройства

Для создания кислородного генератора лучше выбрать «сухую» топливную ячейку, а электроды стоит изготовить из нержавейки. Именно она пользуется наибольшей популярностью среди домашних мастеров

Также важно придерживаться определенной последовательности действий:

По размеру генератора необходимо нарезать пластины из органического стекла или органита, которые будут использоваться в качестве боковых стенок. Оптимальными размерами для топливной ячейки являются 150х150 или 250х250 мм.
В корпусных деталях необходимо просверлить отверстия для установки штуцеров для жидкости, одно для ННО и 4 крепежных.
Из стали марки 316L изготавливаются электроды, размер которых должен быть на 10−20 мм меньше в сравнении с боковыми стенками. В одном из углов каждого электрода необходимо сделать контактную площадку для соединения их в группы, а также подключения к источнику питания.
Чтобы увеличить количество получаемого в электрогенераторе газа Брауна, электроды следует обработать наждачной бумагой с каждой стороны.
В пластинах сверлятся отверстия диаметром 6 мм (подача воды) и 8−10 мм (отвод газа). При расчете мест сверления необходимо учитывать месторасположение патрубков.
Сначала в пластины из оргстекла монтируются штуцера и хорошо герметизируются.
В одну из корпусных деталей устанавливаются шпильки, а затем укладываются электроды.
Электродные пластины отделяются от боковых стенок прокладками из паронита либо силикона. Аналогичным образом необходимо изолировать и сами электроды.
После установки последнего электрода монтируются уплотнительные кольца и генератор закрывается второй стенкой. Сама конструкция скрепляется с помощью гаек с шайбами

В этот момент крайне важно следить за равномерностью затяжки крепежных элементов и не допустить перекосов.
Топливная ячейка подключается к емкости с жидкостью и водному затвору.
После соединения групп электродов в соответствии с их полюсом, генератор подключается к ШИМ-генератору.

Модификации — гибриды

Схема водородного двигателя

Рассмотрим мотор, который сконструировал В.С. Кащеев.

По его разработки, двигатель кроме впускного клапана (6), через который подается воздух и выпускного клапана (7) для вывода выхлопных газов, в головке блока цилиндров (ГБЦ) есть специальный клапан для подачи водорода (9) и свечи зажигания (10), которые расположены в предкамере (8). Последняя располагается выше уровня поршня, когда он находится в нижней мертвой точке.

После того, как поршень достигнет НМТ (в камеру сгорания уже затянулся воздух через впускные клапана), подается водород и происходит воспламенение смеси. В это время уже открываются выпускные клапана. Так как разница давления в камере сгорания и за клапанами большая, при открытии выпускных клапанов, отработанные газы улетают и образуется вакуум и поршень притягивается в ВМТ и за счет импульса (обратно действующая сила) поршень перемещается обратно в НМТ.

Гибридный двигатель — это промежуточное звено между топливным мотором, работающем на продуктах нефти и на чистом водороде. Гибридные автомобили могут эксплуатироваться как на бензине/дизеле, так и на водороде.

Модифицированная топливная система

За основу берется обычный бензиновый двигатель. Топливо остается то же — бензин. Но, через впускной клапан подается воздух с водородом. Топливно-воздушная смесь такого состава повышает увеличить степень сжатия и уменьшить токсичность выхлопных вредных веществ.

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

Закон сохранения энергии ↑

Всё в природе взаимосвязано. Если куда-то что-то прибыло, значит, откуда-то убыло. Эта народная мудрость упрощённо, но в целом верно описывает закон сохранения энергии. Водород, сгорая, выделяет тепловую энергию. Но, чтобы получить газ методом электролиза, придётся затратить некоторое количество электроэнергии. Которая, в свою очередь, по большей части получается за счёт генерации тепла при сжигании других видов топлива. И если брать чистую тепловую энергию, необходимую для получения электричества и ту энергию, которую даст при сгорании водород, даже на самых продвинутых установках получаются двукратные потери. Половину денег мы буквально выбрасываем. И это только эксплуатационные затраты, но ведь следует учесть и стоимость весьма недешёвого оборудования.

Проект ветро-водородного дирижабля AeromodellerII. Картинку бельгийские инженеры нарисовали красивую, остаётся подкрепить её конкретными экономически оправданными технологиями

По данным исследовательской лаборатории  INEEL, на промышленных генераторах водорода США себестоимость одного килограмма водорода составила:

  • Электролиз от промышленной электросети — 6,5 usd.
  • Электролиз от ветрогенераторов — 9 usd.
  • Фотоэлектролиз от солярных устройств — 20 usd.
  • Производство из биомассы — 5,5 usd.
  •  Конверсия природного газа и угля — 2,5 usd.
  •  Высокотемпературный электролиз на атомных электростанциях — 2,3 usd. Это наименее дорогой способ и наиболее далёкий от домашних условий.

Причём, даже самый лучший генератор водорода в домашних условиях будет заметно уступать промышленному в эффективности. С такими ценами нет никаких оснований говорить о сколь-нибудь серьёзной конкуренции водородного топлива по сравнению не только с дешёвым природным газом, но и с дорогим электроотоплением, дизельным топливом и даже тепловыми насосами.

Инструкция: как сделать водородный генератор своими руками

Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.

Схема топливной ячейки «сухого» типа

Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.

Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
В каждой из пластин сверлят два отверстия: сверлом диаметром 6 — 7 мм — для подачи воды в пространство между электродами и толщиной 8 — 10 мм — для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.

Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа. Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.

После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.

Пластины нержавеющей стали отделяют от боковых поверхностей реактора при помощи уплотнительных колец, которые можно сделать из силикона, паронита или другого материала

Важно только, чтобы его толщина не превышала 1 мм. Такие же детали используют в качестве дистанционных прокладок между пластинами

В процессе укладки следят, чтобы контактные площадки отрицательных и положительных электродов были сгруппированы в разных сторонах генератора.

После укладки последней пластины устанавливают уплотнительное кольцо, после чего генератор закрывают второй оргалитовой стенкой, а саму конструкцию скрепляют при помощи шайб и гаек. Выполняя эту работу, обязательно следят за равномерностью затяжки и отсутствием перекосов между пластинами.

При помощи полиэтиленовых шлангов генератор подключают к ёмкости с водой и бабблеру.
Контактные площадки электродов соединяют между собой любым способом, после чего к ним подключают провода питания.

На топливную ячейку подают напряжение от ШИМ-генератора, после чего производят настройку и регулировку аппарата по максимальному выходу газа HHO.

Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

Инструкция по изготовлению

Первый этап. Для начала берем лист стали и размещаем его на ровной поверхности. Из листа указанных выше размеров (0,5х0,5 м) должно получиться 16 прямоугольников для будущей горелки на водороде, вырезаем их болгаркой.

Второй этап. С обратной стороны пластин просверливаем отверстия для болта. Если бы мы планировали сделать «сухой» электролизер, то просверлили отверстия и снизу, но в данном случае этого делать не надо. Дело в том, что «сухая» конструкция порядком сложнее, да и полезная площадь пластин в ней использовалась бы не на 100%. Мы же сделаем «мокрый» электролизер – пластины полностью погрузятся в электролит, а в реакции будет участвовать вся их площадь.

Энергия воды

Третий этап.Принцип работы описываемой горелки основывается на следующем: электроток, проходя через погруженные в электролит пластины, приведет к тому, что вода (она должна входить в состав электролита) разложится на кислород (О) и водород (Н). Следовательно, мы должны располагать одновременно двумя пластинами – катодом и анодом.

С увеличением площади этих пластин увеличивается объем газа, поэтому в данном случае используем по восемь штук на катод и анод, соответственно.

Каждая молекула воды состоит из двух атомов водорода и одного атома

Четвертый этап. Далее нам предстоит установить пластины в пластиковый контейнер так, чтобы они чередовались: плюс, минус, плюс, минус и т. д. Для изоляции пластин используем куски прозрачной трубки (мы купили ее целых 10 м, поэтому запас есть).

Нарезаем из трубки небольшие кольца, разрезаем их и получаем полоски толщиной примерно 1 мм. Это идеальное расстояние, чтобы водород в конструкции эффективно генерировался.

Пятый этап. Пластины крепим друг к другу с помощью шайб. Делаем это следующим образом: надеваем шайбу на болт, затем пластину, после нее три шайбы, еще одну пластину, опять три шайбы и т. д. Восемь штук вешаем на катод, восемь – на анод.

Далее затягиваем гайки и изолируем пластины посредством нарезанных ранее полосок.

Шестой этап. Смотрим, куда именно в контейнере упираются болты, просверливаем в том месте отверстия. Если вдруг болты не помещаются в контейнер, то мы спиливаем их до требуемой длины. Затем вставляем болты в отверстия, надеваем на них шайбы и зажимаем гайками – для лучшей герметичности.

Далее проделываем дыру в крышке для штуцера, вкручиваем сам штуцер (желательно намазав место соединения силиконовым герметиком). Дуем в штуцер, чтобы проверить герметичность крышки. Если воздух все же выходит из-под нее, то промазываем и это соединение герметиком.

Седьмой этап. По окончании сборки тестируем готовый генератор. Для этого подключаем к нему любой источник, заполняем контейнер водой и закрываем крышку. Далее на штуцер надеваем шланг, который опускаем в емкость с водой (чтобы увидеть пузырьки воздуха). Если источник недостаточно мощный, то их в емкости не будет, но вот в электролизере они появятся обязательно.

Далее нам нужно повысить интенсивность выхода газа посредством увеличения напряжения в электролите. Здесь стоит отметить, что вода в чистом виде не является проводником – ток проходит через нее благодаря имеющимся в ней примесям и соли. Мы же разбавим в воде немного щелочи (к примеру, гидроксид натрия отлично подходит – в магазинах он продается в виде чистящего средства «Крот»).

В заключение

Не имеет значения, для какой цели домашнему мастеру потребовался водород. Возможно, всё делалось исключительно в экспериментальных целях. Но факт налицо – устройство для генерации водорода можно собрать своими руками в домашних условиях. Возможно, такое умение будет бесполезным, однако создание чего-то нового с целью познания уже повод заняться подобной работой.

Надеемся, что сегодняшняя информация, даже если она не пригодится, будет интересна нашему уважаемому читателю. Только, пожалуйста, при производстве подобных работ, не забывайте о технике безопасности и средствах индивидуальной защиты.

Если у вас остались вопросы по генератору водорода, задавайте их в обсуждениях ниже. Редакция Homius постарается на них ответить как можно быстрее. Там же можно прокомментировать прочитанное, выразить личное мнение о подобном аппарате. И если вам статья понравилась, не забудьте поставить оценку.

Берегите себя, своих близких и будьте здоровы!

Предыдущая ИСТОРИИДолой ручной труд: самодельная перосъёмная машина
Следующая ИСТОРИИУвеличение количества помещений: как разделить комнату на два жилых помещения

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий