Содержание
- 1 Режимы работы двигателя GDI
- 2 4G93 — двигатель Митсубиси Галант 1.8 литра
- 3 Различия (разновидности) двигателей GDI. Марки автомобилей, где используется GDI
- 4 Положительные стороны
- 5 Насколько важно качество топлива
- 6 Особенности и отличия моторов GDI
- 7 В чём отличия между двигателями 4g94 и 4g93
- 8 Стоит ли овчинка выделки?
- 9 GDi двигатель, разбираемся, что за зверь такой
- 10 Типичные проблемы и неисправности
- 11 6G74 и 6G75
- 12 Впрыск топлива и разновидности GDI
- 13 Описание двигателя
- 14 Устройство и принцип действия системы GDI
Режимы работы двигателя GDI
Технология прямого впрыска GDI
GDI двигатель способен работать в различных режимах (их три), каждый из которых зависит от преодолеваемой нагрузки. Рассмотрим эти режимы:
- Режим работы на сверхбедной смеси. Включается данный режим, когда двигатель слабо нагружен. При нём впрыск топлива осуществляется в конце такта сжатия. Соотношение воздух/топливо в этом случае 40/1.
- Режим работы на стехиометрической смеси. Этот режим включается, когда двигатель испытывает среднеинтенсивную нагрузку (например: разгон). Топливо подаётся на впуске, оно впрыскивается коническим факелом, заполняя цилиндр и охлаждая воздух в нём, что предупреждает детонацию.
- Режим работы системы управления. При нажатии “тапки в пол” с малых оборотов, впрыск топлива осуществляется поэтапно, в две стадии. Малая часть топлива впрыскивается на впуске, охлаждая воздух в цилиндре. В цилиндре образуется сверх обеднённая смесь (60/1), которой не свойственны детонационные процессы. А под конец такта сжатия в цилиндр впрыскивается необходимое количество топлива, что “обогащает” топливно-воздушную смесь (12/1). При этом для детонации уже не остаётся времени.
В итоге, увеличилась степень сжатия до 12-13, а двигатель нормально функционирует на бедной смеси. Совместно с этим повысилась мощность двигателя, уменьшился расход топлива и уровень вредных выбросов в атмосферу.
А самые новые двигатели GDI от КИА оснащены турбонаддувом, а именуются они T-GDI. Так последние двигатели семейства Kappa отражают мировую тенденцию к “даунсайзингу”, что выражается в уменьшении объёмов двигателей вместе с увеличением их эффективности. Например, двигатель 1.0 T-GDI от КИА имеет мощность 120 л.с. и крутящий момент 171 Нм.
4G93 — двигатель Митсубиси Галант 1.8 литра
Технические характеристики 1.8-литрового бензинового двигателя Митсубиси 4G93, надежность, ресурс, отзывы, проблемы и расход топлива.
1.8-литровый двигатель Митсубиси 4G93 выпускался японской компанией с 1991 по 2014 годы и ставился не только на многие ее модели, но и на автомобили Вольво, Протон либо Брильянс. Мотор предлагали в версии с карбюратором, инжектором, прямым впрыском и турбонаддувом.
В линейку 4G9 также входят двс:
4G91,
4G92 и
4G94.
Модификация: 4G93 carburetor SOHC
Точный объем | 1834 см³ |
Система питания | карбюратор |
Мощность двс | 110 л.с. |
Крутящий момент | 154 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 8.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ремень |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 1 |
Примерный ресурс | 300 000 км |
Модификация: 4G93 MPI SOHC
Точный объем | 1834 см³ |
Система питания | инжектор |
Мощность двс | 120 л.с. |
Крутящий момент | 159 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 9.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ременной |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 2/3 |
Примерный ресурс | 350 000 км |
Модификация: 4G93 MPI DOHC
Точный объем | 1834 см³ |
Система питания | инжектор |
Мощность двс | 140 л.с. |
Крутящий момент | 167 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 10.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ремень |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 3 |
Примерный ресурс | 375 000 км |
Модификация: 4G93T MPI DOHC TURBO
Точный объем | 1834 см³ |
Система питания | инжектор |
Мощность двс | 195 — 215 л.с. |
Крутящий момент | 270 — 285 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 8.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ременной |
Фазорегулятор | нет |
Турбонаддув | да |
Какое масло лить | 3.6 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 3 |
Примерный ресурс | 275 000 км |
Модификация: 4G93 GDI DOHC
Точный объем | 1834 см³ |
Система питания | прямой впрыск |
Мощность двс | 120 — 150 л.с. |
Крутящий момент | 175 — 180 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 12 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ремень |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-95 |
Экологический класс | ЕВРО 4 |
Примерный ресурс | 250 000 км |
Модификация: 4G93T GDI DOHC TURBO
Точный объем | 1834 см³ |
Система питания | прямой впрыск |
Мощность двс | 160 — 165 л.с. |
Крутящий момент | 220 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 10 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ременной |
Фазорегулятор | нет |
Турбонаддув | да |
Какое масло лить | 3.6 литра 5W-30 |
Тип топлива | АИ-95 |
Экологический класс | ЕВРО 4 |
Примерный ресурс | 225 000 км |
На примере Mitsubishi Galant 1.8 1995 года с механической коробкой передач:
Город | 9.7 литра |
Трасса | 5.7 литра |
Смешанный | 7.4 литра |
Carisma DA | 1995 — 2004 |
Colt CA | 1992 — 1996 |
Galant E50 | 1992 — 1996 |
Galant EA | 1996 — 2006 |
Lancer CB | 1991 — 1996 |
Lancer CK | 1995 — 2003 |
Lancer CS | 2000 — 2007 |
Pajero Pinin H67 | 1998 — 2007 |
Space Wagon N30 | 1991 — 1998 |
Space Star DG0 | 1998 — 2005 |
S40 | 1998 — 2004 |
V40 | 1998 — 2004 |
Wira | 1993 — 2009 |
Putra | 1996 — 2004 |
BS4 | 2006 — 2014 |
BS6 | 2000 — 2010 |
Модификации GDI известны частыми капризами системы прямого впрыска топлива
Проблемой всех версий мотора служит быстрый выход из строя гидрокомпенсаторов
При загрязнении регулятора холостого хода двигатель начинает глохнуть сам по себе
На пробегах более 150 тысяч км обычно начинается масложор из-за залегания колец
Если прозевать уровень масла, то весьма высока вероятность проворота вкладышей
Различия (разновидности) двигателей GDI. Марки автомобилей, где используется GDI
Несложно предугадать, что другие ведущие автопоизводители займутся разработкой системы, работающей по схеме GDI. Причина тому – ужесточение экологических стандартов, жесткая конкуренция со стороны электротранспорта (большинство автомобилистов склонны отдать предпочтение тем автомобилям, которые потребляют минимальное количество горючего).
Сложно создать полный перечень марок авто, в которых можно встретить подобный мотор. Гораздо легче сказать, какие бренды еще не решились перенастроить свои производственные линии на изготовление такого типа ДВС. Большинство машин последнего поколения, скорее всего, будут оснащаться этими агрегатами, так как они показывают достаточную экономичность вместе с увеличением КПД.
Старые авто точно не могут оснащаться данной системой, потому что электронный блок управления должен иметь особенное программное обеспечение. Все процессы, происходящие во время распределения топлива по цилиндрам, управляются электроникой на основе данных, поступающих от множества датчиков.
Положительные стороны
Как уже говорилось выше, главные плюсы двигатель GDI получает благодаря возможности работы на сильно обеднённой смеси при отсутствии больших нагрузок. Преимуществом уменьшения соотношения с 1:14 до 1:20 является существенное снижение расхода топлива при движении в смешанном или городском цикле. Исследования специалистов показывают, что в городском заторе с длительной работой двигателя на постоянных оборотах холостого хода затраты горючего уменьшаются сразу на 20–25%. Однако говорить о таких же результатах при быстрой езде по трассе не приходится — двигатель GDI будет требовать столько же топлива, сколько и силовой агрегат с распределённым впрыском.
Двигатель KIA с системой GDI
Дополнительные плюсы удаётся получить и от смесеобразования, происходящего непосредственно в камере сгорания. Специалисты по двигателям автомобилей могут сказать, что горение в цилиндре происходит неравномерно — больше всего топлива удаётся поджечь в непосредственной близости к свече, тогда как дальние части камеры охватываются неравномерно, что и приводит к выбросу остатков горючего в выхлопную трубу. Компания Volkswagen впервые предложила технологию послойного прямого впрыска топлива, назвав её FSI — впоследствии другие автомобильные фирмы приняли на вооружение такую методику.
За один обычный такт впуска форсунка может впрыскивать до пяти порций топлива, которые образуют неравномерную смесь, составленную с учётом всех нюансов процесса горения. Благодаря этому двигатели FSI и современные агрегаты GDI имеют меньший расход топлива, меньшую токсичность выхлопа, а также лучшую стабильность работы на невысоких оборотах.
Двигатель V6 FSI Audi
Такое изменение смесеобразования позволяет получить и другой положительный эффект, сущность которого заключается в повышении мощности и тяги приблизительно на 10–15%. Кроме того, двигатель GDI позволяет получить плюсы, связанные с уменьшением объёма нагара. Соответственно, увеличивается срок службы многих компонентов, а масло сохраняет большую часть своих свойств вплоть до момента замены. Плюсы заключаются и в снижении вероятности поломки мотора в результате закупорки масляных каналов продуктами сгорания топлива. Однако ни одна сложная конструкция не может обойтись без своих минусов — включая и мотор с непосредственным впрыском.
Насколько важно качество топлива
- Очистка происходит с помощью фильтра-сеточки в насосе бензобака.
- Производится очистка обыкновенным фильтром. В зависимости от марки автомобиля, его месторасположения может меняться. Фильтр может устанавливаться в баке либо под днищем.
- Фильтрация происходит с помощью фильтра-стакана, расположенного в топливопроводе ТНВД.
- Последний этап очистки происходит в тот момент, когда горючее подается из «топливной рейки» в бак.
Еще одна распространенная проблема GDI — плавающие обороты. Причиной может послужить как воздействие низкосортного горючего, так и естественный износ элементов ТНВД.
Особенности и отличия моторов GDI
Принцип работы двигателя GDI представляет собой своеобразный «симбиоз» привычных бензиновых и дизельных ДВС. Начнем с того, что для нормальной работы любого двигателя внутреннего сгорания в цилиндры необходимо подать так называемую топливно-воздушную смесь. Другими словами, определенная часть горючего смешивается в необходимой пропорции с частью воздуха применительно к разным режимам работы мотора. От состава смеси напрямую зависит мощность двигателя, КПД, экономичность, экологичность и ряд других характеристик.
Большинство бензиновых и дизельных двигателей сегодня:
- моторы с внешним смесеобразованием. К таковым относятся устаревшие карбюраторные агрегаты на бензине и современные атмосферные, компрессорные или турбированные инжекторные бензиновые моторы. В таких двигателях процесс приготовления топливно-воздушной смеси происходит отдельно (во впускном коллекторе), после чего готовый заряд поступает в цилиндры и воспламеняется от свечи системы зажигания;
- двигатели с внутренним смесеобразованием. Данный тип агрегатов представлен дизельными моторами, в которых порция дизтоплива подается напрямую в цилиндры и смешивается с уже имеющимся там воздухом. Воспламенение заряда происходит от контакта подаваемой солярки с разогретым от сжатия объемом воздуха, то есть без участия внешнего источника воспламенения;
Двигатель GDI представляет собой бензиновый мотор, в котором процесс смесеобразования аналогичен дизельному, то есть топливо впрыскивается прямо в цилиндры, где происходит смешивание с поданным ранее воздухом. При этом полученная топливно-воздушная смесь воспламеняется в цилиндре посредством искры от свечи зажигания.
Если сказать иначе, воздух поступает в двигатель отдельно, форсунка GDI осуществляет непосредственный впрыск топлива в цилиндр, затем происходит перемешивание компонентов, после чего поджиг смеси осуществляет электрическая искра свечи зажигания. Следует добавить, что во время такого смесеобразования конструкторами учитывается ряд аэродинамических особенностей для получения оптимально упорядоченного состава смеси. По этой причине конструкция поршня и камеры сгорания существенно отличается от аналогов в двигателях с внешним смесеобразованием, а также форкамерных ДВС. Днище поршня имеет особую форму для направления факела распыла на свечу зажигания, ГБЦ получила вертикальные прямые впускные каналы, что позволяет «закручивать» воздух в цилиндрах двигателя. Благодаря такому устройству топливно-воздушная рабочая смесь в GDI движется по строго заданной траектории.
Более того, состав смеси отличается в разных участках общего объема цилиндра. В результате подобных решений двигатели линейки GDI способны работать на сильно обедненной смеси, которая была бы непригодна для работы обычного бензинового мотора. Необходимое для воспламенения от искры соотношение топлива и воздуха концентрируется в цилиндре GDI в области расположения свечи зажигания, в то время как по условным «краям» цилиндра смесь остается максимально обедненной.
Еще одной особенностью двигателя GDI является наличие двух топливных насосов:
- привычный электробензонасос в топливном баке;
- топливный насос высокого давления (ТНВД) с механическим приводом от ДВС;
Данное решение также является аналогом принципа подачи топлива в дизельном двигателе. В моторах GDI давление впрыска составляет около 50 бар, в то время как в обычных бензиновых ДВС около 3 бар.
В чём отличия между двигателями 4g94 и 4g93
В первую очередь отличия затрагивают возможности ремонта. Любой спец подтвердит, что 4g94 менее сложен, удобен в плане выполнения той или иной операции. На нём нет балансирных валов, что делает движок конструктивно проще. Однако он сильно задушен экологическими нормами, чему свидетельствует установка навороченной системы рециркуляции выхлопа. Поэтому он и быстрее загрязняется — покрываются сажей клапаны.
Второй момент: двигатель 4g93 выпускается в нескольких модификациях, довольно сильно отличающихся между собой. Например, если в 1995 году мотор имел некоторые особенности и характерные «болячки», то в 2000 году — это был совершенно другой мотор, который надо заново изучать.
С другой стороны, был бы 4g93 так плох, его бы не выпускали в разных вариациях уже больше 15 лет, что по статистике является хорошим показателем надёжности. И эксперты сходятся во мнении, что 4g93 на сей день — один из лучших японских моторов.
У этих двух моторов также отличается ТНВД. Однако это не останавливает любителей различных экспериментов. Так, часто наши российские умельцы ставят вместо 4g93 новый мотор 4g94.
- Он встаёт чётко, как родной.
- Меняются шпильки на фиксаторы опор двигателя.
- ГУР в комплекте со своими деталями должен быть от старого мотора.
- Дроссель нужен родной, механический.
- Маховик тоже заменить.
- Фишки датчика давления ТНВД надо поставить от нового двигателя, срезав старые.
Примечательно, что двигатель с прямым впрыском был впервые установлен на Митсубиси Галант. Это уже затем такая конструкция была успешно перенята Тойотой, Ниссаном и т. д. По этой причине 4g94 считается родным, характерным мотором для Галанта.
Вот что его выделяет конкретно на этой машине:
- экологичность;
- экономичность (если следовать рекомендациям производителя, то двигатель с АКПП не будет есть больше 7 литров на трассе);
- хорошая тяга;
- надёжность (вопреки распространённому мнению).
Лучше всего зарекомендовала себя в паре с 4g94 автоматическая коробка передач INVECS-II. Она ловко подстраивается под «характер» двигателя, даёт возможность ручного переключения ступеней.
Стоит ли овчинка выделки?
Какие выгоды сулит новый двигатель с НВ, в том числе и системы GDI:
- Ежедневная эксплуатация автомобиля в городских условиях, когда силовой агрегат постоянно работает на стабильных оборотах ХХ, сопровождается заметной экономией топлива — примерно на 20 — 25%. За городом расход горючего остается таким же, как и у агрегата с распределенным впрыском.
- Особенности принципа смесеобразования обеспечивают «джедаю» взрывной характер, тяга и мощность агрегата превосходят аналогичные показатели обычного (распределенного) инжектора.
- Он более чист с экологической точки зрения, правда, российский владелец от этого ничего не имеет, в отличие от японца. Ведь островные жители приобретают тот же Mitsubishi с двигателем GDI в основном для получения льготной скидки по транспортному налогу, а ремонт силового агрегата они перекладывают на будущего покупателя, как правило, зарубежного.
- Некоторые утверждают, что GDI двигатель лучше запускается в зимнее время.
GDi двигатель, разбираемся, что за зверь такой
Автопроизводители постоянно подсовывают потребителю новые, понятно-непонятные аббревиатуры, вчера мы разбирались с MPI, а сегодня продолжая тему двигателей поговорим о Японской Джедае. GDI расшифровывается как Gasoline Direct Injection переводя дословно получаем “непосредственный впрыск бензина”.
Система не новая, разрабатывалась еще далеко до 2000-х годов, а первый автомобиль с мотором GDI это Mitsubishi Galant начиная с 1997 года, двигатель 1.8, не мало проблем он доставил своим владельцам, но об этом поговорим позже.
Принцип GDI заключается в “симбиозе” бензинового и дизельного ДВС. В дизельном двигателе топливо подается непосредственно в камеру сгорания, где оно, смешиваясь с сжатым горячим воздухом начинает гореть. Непосредственный впрыск в бензиновых моторах “заимствует” у дизельных агрегатов расположение форсунки непосредственно в камере сгорания. Таким образом воздушно-топливная смесь формируется во время циклов впуска и сжатия. Открываются впускные клапана, в камеру сгорания попадает воздух и уже там происходит впрыск бензина и смешивание.
Тут у инженеров открывается новый горизонт настройки и регулировки смеси. Джедай имеет три основных режима впрыска: ULCM, SOM, two-stage mixing. Первый режим (ULCM) рассчитан на работу двигателя на максимально обедненной смеси, в этом режиме обеспечивается максимальная экономия топлива при условии плавного разгона и небольшого открытия дросселя, данный режим может поддерживать до скорости в 120 км/ч.
Второй режим (SOM) , в этом режиме смесь формируется в такой пропорции, чтобы топливо сгорало в полном объеме. Этот режим работает в условиях нагрузки: движение в горку, загруженный автомобиль, буксировка прицепа.
Третий режим , предлагался только для европейского рынка, данный режим рассчитан для резких стартов и максимальных нагрузок, например, обгон на немецких автобанах. В этом режиме топливо впрыскивается сначала на такте впуска, получается очень бедная невоспламеняемая смесь, так осуществляется дополнительное охлаждение, благодаря чему в камеру сгорания поступает больше воздуха. Во время сжатия происходит следующий впрыск и смесь становится максимально богатой.
Но это еще не все отличия , так как процесс подачи топлива должен осуществляться значительно быстрее, чем в классических схемах, где смесь формируется во впускном коллекторе. Для этого нужно повысить давление в топливной рампе с 3-х до 50-ти бар. В GDI используется два топливных насоса, классический в баке и насос высокого давления (ТНВД). Форсунка, например, в MPI, открывается на 3 мсек, а у GDI на 0.51 мсек, высокое давление позволяет двигателю ровно работать, расходую при этом значительно меньше топлива. Также для того, чтобы топливо с воздухом равномерно смешивалось, в GDI моторах используются специальные поршни.
Преимущества очевидны, меньше потерь и оседания топлива во впускном коллекторе = меньше расход топлива, более ровная работа на обедненных смесях, более гибкая настройка смеси = больше КПД, двигатель лучше едет с низких оборотов.
Недостатки связаны в первую очередь с топливной аппаратурой, если в Японии на качественном бензине это работает, то у нас свечи необходимо менять раз в 20 тысяч, избирательно относиться к заправкам, раз в 30 тысяч промывать форсунки.
Очень сильно покрывается сажей и копотью впускной коллектор и впускные клапана, это эффект от работы ЕГР. Если в том же MPI нагар и копоть смывались бензином, то в GDI остается лишь воздух. Поэтому в большинстве случаев на этих моторах ЕГР сразу глушат.
Источник
Типичные проблемы и неисправности
Мицубиси Паджеро Пинин, как правило, не доставляет серьезных проблем, но имеет несколько недугов. Одним из них является коррозия. К счастью, ее масштабы невелики. Очаги ржавчины можно обнаружить в нижней части кузова: на порогах, колесных арках и рамках дверей. Сильно проржавевших экземпляров лучше избегать, так как найти кузовное железо непросто. Коррозия поражает и элементы выхлопной системы. Приходится считаться с коррозией и в электропроводке и, как следствие, с мелкими сбоями.
С особой осторожностью следует подходить к выбору версий с GDI, которые могут оказаться настоящими ловушками. Подвеска очень простая и достаточно стабильная
Обычно менять приходится резинки и втулки. Передний рычаг подлежит восстановлению, как и четыре направляющие штанги заднего моста
Подвеска очень простая и достаточно стабильная. Обычно менять приходится резинки и втулки. Передний рычаг подлежит восстановлению, как и четыре направляющие штанги заднего моста.
Со временем в рулевом управлении появляется люфт, устранение которого не потребует больших затрат. Тормозная система достаточно надежная, особенно сзади, где используется барабанный механизм.
Трансмиссия нуждается в обычных проверках на наличие утечек, люфта карданных валов и подключение переднего моста. Сцепление имеет невысокий ресурс, который ощутимо сокращают регулярные выезды на бездорожье. Стоимость нового комплекта – от 10 000 рублей.
6G74 и 6G75
Естественное продолжение ДВС 6G72 – доработанные версии 6G74 и 6G75. Первым появился 6G74 в 1992 году. Его ставили на «Паджеро» 2-го и 3-го поколений, а на последних моделях использовали 6G75.
6G74 разработан на базе 6G72. Его блок цилиндров расточен до 93 мм и адаптирован под работу коленвала с ходом поршня 85.8 мм. Естественно, есть разные модификации с отличающимися ТТХ. Самый распространенный мотор – с системой SOHC, 24 клапанами и индексом сжатия 9.5. Его мощность достигает 180-222 л.с. Также были моторы 6G74 с системой DOHC, сжатием 10 и мощностью 208-230 л.с. Последняя версия получила ГБЦ DOHC 24V GDI. Такой двигатель оснастили технологией непосредственного впрыска топлива, индекс сжатия возрос до 10.4, мощность – до 245 л.с.
6G75 ставится на автомобили 3 и 4 поколения, но по факту он пришел еще с 1-го, правда, в измененном виде. Данный мотор ставят на Mitsubishi Pajero даже сегодня. Это V-образный мотор с 6 цилиндрами и 24 клапанами. От предшественника 6G74 он отличается новым блоком цилиндров, рассчитанным под работу коленвала с ходом поршня 90 мм, и цилиндрами диаметром 93 мм. Также производитель поставил кованые шатуны.
ГБЦ с 24 клапанами оснастили системой регулировки высоты подъема клапанов и изменения фаз газораспределения. Это основные отличия от предыдущих моторов. Ременной привод ГРМ остался – ролики с ремнем требуют замены через 90 тыс. км.
Что касается проблем моторов 6G74 и 6G75, то они точно такие же, как у 6G72. То есть наблюдается «масложер» на моторах с пробегом 100+ тысяч километров. Можно ездить и доливать масло, но это чревато преждевременным износом ЦПГ, в идеале потребуется замена маслосъемных колец и колпачков. Стук в двигателе возникает из-за изношенных гидрокомпенсаторов, а плавающие обороты говорят о неисправности регулятора холостого хода. Все эти проблемы имеют место на двигателях серии 6G. Владельцам можно порекомендовать использовать качественный бензин и масло, своевременно менять «расходники», что исключит проблемы с двигателем в течение 400 тысяч километров.
На 1-2-3 поколениях использовался мотор 4D56, но на автомобилях 4 поколения его нет. Это классический 4-рядный дизельный ДВС, который производили, начиная с 1986 года. Блок цилиндров мотора – чугунный, диаметр цилиндров составляет 91.1 мм. Внутри расположили кованный коленчатый вал с ходом поршня 95 мм, 2 балансирных вала. Его объем – 2.5 литра.
Привод ГРМ – ременной, и служит он 90 тысяч километров, замет его необходимо менять, иначе ремень порвется или слетит, что приведет к гнутью клапанов.
И хотя 4D56 – надежный мотор, он получил некоторые недостатки:
- Шумы, вызванные приходом в негодность шкива коленвала. Простое решение – замена на новый.
- Течи масла. Здесь все стандартно: на изношенных моторах (а сегодня они почти все изношены) текут сальники балансирных валов, прокладки клапанной крышки и поддона.
- Трещины в ГБЦ. Характерный симптом трещины – бурление антифриза в расширительном бачке. Головку можно заварить, но это временная мера. В идеале придется покупать новую ГБЦ.
- Дым из двигателя. Причина его появления – неполное сгорание топлива. В большинстве случаев сбой дают форсунки – после замены на новые работа нормализуется.
На 4D56 следует контролировать ремень балансирных валов – он требует замены через 40-50 тысяч километров. Если он порвется, то попадет под ремень ГРМ. Некотоыре мастера банально убирают балансирные валы, но это чревато тем, что на высоких оборотах коленвал сломается. Ну и стандартная проблема – клапан EGR, требующий чистки через 30-40 тыс. км. Его можно заглушить без вреда для мотора.
Впрыск топлива и разновидности GDI
Моторы GDI имеют целый ряд конструктивных различий, благодаря чему их можно разделить на две группы:
- для внутреннего японского рынка;
- для европейских рынков;
Отличаются такие агрегаты по конструкции самого мотора, по особенностям исполнения ТНВД и по устройству системы топливного впрыска. Версии для Японии имеют два основных режима впрыска топлива GDI:
- ultra lean combustion mode;
- superior output mode;
Первый режим предполагает работу мотора на сверхобедненной смеси, которая имеет соотношение 37:1-43:1. Такой режим работы поддерживается ЭБУ на умеренных скоростях до 110-120 км/ч. с учетом плавного разгона, то есть без резких нажатий на педаль газа. В указанном режиме двигатель GDI обеспечивает максимальный показатель крутящего момента. Форсунки впрыскивают горючее в тот момент, когда поршень находится на такте сжатия и не дошел до ВМТ. Подача топлива инжектором в этом случае происходит в виде однородной струи, после происходит завихрение потока по часовой стрелке для наилучшего смешивания с воздухом в цилиндре.
Во втором режиме предполагается стехиометрический состав смеси топлива и воздуха. Указанный режим работы активируется в том случае, если мотор находится под нагрузкой (движение на высокой скорости, буксирование прицепа, езда в гору и т.п.)
В версиях для Европы мотор GDI получил дополнительный режим two-stage mixing. Указанный режим рассчитан на активный разгон с места или необходимость резкого ускорения при обгоне. В таком режиме топливо выпрыскивается в цилиндры ступенчато (в два этапа за 4 такта).
На такте впуска в этом режиме совершается первый впрыск, результатом которого становится максимально обедненная смесь в цилиндре с соотношением около 60:1. Данная смесь не рассчитана на воспламенение. Главной задачей является эффективное охлаждение камеры сгорания, так как в охлажденную камеру можно будет подать больший объем воздуха и топлива на такте сжатия. Другими словами, данное решение позволяет улучшить наполнение цилиндров. Затем на такте сжатия происходит второй впрыск, после которого состав смеси уже составляет 12:1, то есть рабочая смесь становится максимально обогащенной.
В результате цилиндры эффективно наполняются и двигатель отдает максимально доступную мощность. По сравнению с моторами, которые имеют распределенный впрыск, GDI оказывается на 10% мощнее. В итоге европейские версии GDI более эластичны и способны отдавать больше крутящего момента на «низах» при необходимости резко ускориться во время движения на скорости 30-60 км/ч.
Также следует отметить особый режим двигателя GDI под названием stich F/B. Указанный режим работы предполагает наиболее приближенный к стехиометрическому состав топливно-воздушной смеси, а также делится на два подрежима: closed loop и open loop.
В первом случае состав смеси регулируется на основе показаний кислородного датчика, во втором показания датчика не влияют на состав смеси топлива и воздуха. Данная особенность является отличием GDI от других моторов во время работы на холостом ходу. ЭБУ двигателем динамично меняет режимы compression on lean и stich F/B во время работы мотора на холостых оборотах, условно продувая цилиндры. Особенностью является повышение холостых оборотов двигателя до 900-950 об/мин. в момент перехода между указанными режимами. Указанная смена режимов работы GDI в норме должна происходить 1 раз в 4 мин. Все режимы переключаются под управлением ЭБУ. Если говорить о комфорте водителя, смена режимов и изменения в работе мотора практически не ощущаются.
Что касается токсичности GDI, японские инженеры разработали специальные катализаторы для моторов, которые работают на сильно обедненной смеси. В результате уровень окислов азота в выхлопе такого двигателя уложился в рамки Евро-3. Стоит отметить, что высокое содержание серы, которое отмечено в отечественном бензине, быстро выводит каталитические нейтрализаторы из строя.
Описание двигателя
Как устроен обычный двигатель? В него подается уже готовая смесь бензина и воздуха. Сам процесс смешивания происходит при помощи впускного коллектора. В нем же устанавливаются форсунки, которые управляются при помощи электронной части. Gdi двигатель — что это такое? В японском двигателе распылитель направлен непосредственно в саму камеру, в которой происходит сгорание топлива. Поэтому бензин смешивается с воздухом уже в цилиндрах двигателя. Многие считают такую схему более неустойчивой, потому что в складывающихся условиях бензину сложно равномерно смешаться с воздухом. Для того чтобы компенсировать этот недостаток, была сооружена сложная система программного обеспечения, которая рассчитана на различные циклы работы.
Двигатель GDI
Система действительно очень продумана и способна принимать серьезные решения относительно состояния топлива и двигателя. К примеру, компьютер в холодное время года дает больше времени на разогрев бензина, чем в летнее и не дает водителю тронуться раньше, во избежание поломок. Компьютер способен контролировать количество воздуха в топливе, при его недостатке он зажигает предупреждающую кнопку, сигнализируя о забитости клапанов. Кроме того, для данного типа двигателей используются вихревые распылители, которые способны впрыскивать топливо в виде мелкого тумана.
В итоге работы такой системы двигатель получат топливо, которое смешано с воздухом в отношении один к двадцати, что на одну треть ниже чем на обычных двигателях.
Устройство и принцип действия системы GDI
В наши дни системы, аналогичные Gasoline Direct Injection, используют и другие производители автомобилей, обозначая данную технологию TFSI (Audi), FSI или TSI (Volkswagen), JIS (Toyota), CGI (Mercedes), HPI (BMW). Принципиальными отличиями этих систем являются рабочее давление, конструкция и расположение топливных форсунок.
Конструктивные особенности двигателей GDI
Система питания воздухом двигателя GDI
Классическая система непосредственного впрыска топлива конструктивно состоит из следующих элементов:
- Топливный насос высокого давления (ТНВД). Для корректной работы системы (создания тонкого распыливания) бензин в камеру сгорания должен подаваться под высоким давлением (аналогично дизельным моторам) в пределах 5…12 МПа.
- Электрический топливный насос низкого давления. Подает топливо из бензобака к ТНВД под давлением 0,3…0,5 МПа.
- Датчик низкого давления. Фиксирует уровень давления, созданного электрическим насосом.
- Форсунки высокого давления. Осуществляют впрыск топлива в цилиндр. Оснащены вихревыми распылителями, позволяющими создавать требуемую форму топливного факела.
- Поршень. Имеет особую форму с выемкой, которая предназначена для перенаправления горючей смеси к свече зажигания двигателя.
- Впускные каналы. Имеют вертикальную конструкцию, благодаря чему возникает обратный вихрь (закручен в противоположную сторону по сравнению с другими типами двигателей), выполняющий функцию направления смеси к свече зажигания и обеспечивающий лучшее наполнение камеры сгорания воздухом.
- Датчик высокого давления. Располагается в топливной рампе и предназначен для передачи информации в электронный блок управления, который изменяет уровень давления в зависимости от актуальных режимов работы двигателя.
Режимы работы системы прямого впрыска
Схема работы непосредственного впрыска топлива
Как правило, двигатели с непосредственным впрыском имеют три основных режима работы:
- Впрыск в цилиндр на такте сжатия (послойное смесеобразование). Принцип работы в этом режиме заключается в образовании сверхбедной смеси, что позволяет максимально экономить топливо. В начале в камеру цилиндра подается воздух, который закручивается и сжимается. Далее под высоким давлением осуществляется впрыскивание топлива и перенаправление полученной смеси к свече зажигания. Факел получается компактным, поскольку формируется на этапе максимального сжатия. При этом топливо как бы окутано прослойкой воздуха, что уменьшает тепловые потери и предотвращает предварительный износ цилиндров. Режим используется при работе мотора на малых оборотах.
- Впрыск на такте впуска (гомогенное смесеобразование). Состав топлива в этом режиме близок к стехиометрическому. Подача воздуха и бензина в цилиндр происходит одновременно. Факел смеси при таком впрыске имеет коническую форму. Применяется при мощных нагрузках (скоростной езде).
- Двухстадийный впрыск на такте сжатия и впуска. Применяется при резком ускорении машины, движущейся на малой скорости. Двойной впрыск в цилиндр позволяет снизить вероятность детонации, которая может возникнуть в моторе при резкой подаче обогащенной смеси. Вначале (на такте впуска воздуха) подается небольшое количество бензина, что приводит к образованию обедненной смеси и снижению температуры в камере сгорания цилиндра. На такте максимального сжатия подается оставшаяся часть топлива, что делает смесь богатой.