Что лучше асинхронный или синхронный двигатель

Асинхронные электродвигатели

Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:

  • Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
  • Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
  • Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.

По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.

Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:

  • Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
  • Допустимость кратковременных перегрузок.
  • Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
  • Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
  • Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.

Электрические машины с короткозамкнутым ротором имеют свои недостатки:

  • Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
  • Технически сложная реализация регулирования частоты вращения.
  • Высокие пусковые токи при прямом запуске.

Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.

Такие электродвигатели обладают следующими достоинствами:

  • Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
  • Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
  • Возможность регулировки скорости.

Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.

Строение двигателя

Основные элементы электродвигателя это – статор, ротор, их обмотки и магнитопровод.

Преобразование электрической энергии в механическую происходит во вращающейся части мотора — роторе.

У двигателя переменного тока, ротор получает энергию не только за счет магнитного поля, но и при помощи индукции. Таким образом, они называются асинхронными двигателями. Это можно сравнить с вторичной обмоткой трансформатора. Эти асинхронные двигатели еще называют вращающимися трансформаторами. Чаще всего используется модели рассчитанные на трех фазное включение.

Конструкция асинхронного двигателя

Направление вращения электродвигателя задается правилом левой руки буравчика: оно демонстрирует связь между магнитным полем и проводником.

Второй очень важный закон – Фарадея:

  1. ЭДС наводиться в обмотке, но электромагнитный поток меняется во временем.
  2. Величина наведенной ЭДС прямо пропорциональна скорости изменения электрического потока.
  3. Направление ЭДС противодействует току.

Преимущества асинхронного обучения

Есть три причины, почему специалисты в области eLearning отдают предпочтение асинхронному дистанционному обучению:  

1. Гибкий формат для учащихся

Поскольку учащиеся могут заниматься в любое время и в своем ритме, им проще вписать обучение в свое расписание. Кто-то любит проснуться пораньше, а кто-то может выделить время только поздним вечером, когда дети уснули. Асинхронное обучение подойдет и тем, и другим. 

А еще оно хорошо сочетается с разными стилями обучения: например, для визуалов можно добавить побольше картинок, и записать озвучку текстовых слайдов для аудиалов. Людям с ограниченными возможностями тоже проще учиться асинхронно, если при создании материалов вы позаботитесь о доступности: сделаете шрифты крупнее и контрастнее, добавите подписи к картинкам, включите субтитры для видео и т.п. 

2. Хорошо масштабируется

Вы создаете асинхронный учебный курс один раз — и можете использовать его сколько угодно. Никакой дополнительной работы — разве что докрутить что-то на основании обратной связи. Допустим, вы записали ролик «Как пользоваться аппаратом для попкорна». Когда новый сотрудник приходит в команду, вы просто кидаете ему ссылку — и не нужно каждый раз рассказывать все заново. 

А еще, неважно сколько у вас сотрудников — пять или пять сотен. Один и тот же контент можно одновременно показывать всем

Это подводит нас к следующему преимуществу.

3. Дешевле, чем очное обучение в аудитории 

Старое доброе обучение в классе — это дорого, особенно если у вас большая команда. А если сотрудники работают удаленно, собрать их в одном месте вылетит вам в копеечку. 

С асинхронным обучением все наоборот — чем больше у вас учащихся, тем ниже будет стоимость обучения на одного сотрудника. Допустим, вы заплатили 30 000 рублей за курс. Если его пройдут 10 сотрудников, то стоимость обучения каждого (условно) составит 3 000 рублей. А если сотрудников 100 — то на обучение каждого приходится по 300 рублей. 

Устройство

Генератор имеет простую структуру. Основными элементами устройства являются:

  • ротор;
  • статор.

Первый представляет собой подвижную деталь, а второй элемент в процессе эксплуатации сохраняет свое положение. В агрегате не сразу удается заметить обмотки проволоки, для изготовления которой обычно задействуют медь. Однако обмотки есть, только выполнены они из алюминиевых стержней и отличаются улучшенными характеристиками.

Внутреннее пространство заполнено пластинами из стали, а сами стержни из алюминия впрессованы в пазы, предусмотренные в сердечнике подвижного элемента. На валу генератора расположен ротор, а сам он стоит на специальных подшипниках. Фиксацию элементов агрегата обеспечивают две крышки, зажимающие вал с двух сторон. Корпус выполнен из металлического материала. Некоторые модели дополнительно оснащены вентилятором для охлаждения устройства во время работы, а на корпусе располагаются ребра.

Преимуществом генераторов является возможность их использования в сети с напряжением как в 220 В, так и с более высокими показателями. Для правильного подключения агрегата необходимо выбрать подходящую схему.

Как устроен асинхронный двигатель

Первая главная деталь в электромоторе называется статором, вторая – ротором. Статор сделан в форме цилиндра из крепкого листа нержавеющей стали. Внутри сердечника статора установлены обмотки из специальных проводов. Оси проводов укладываются под углом в 120°. Для работы на разных электросетях концы кабелей скрепляются в виде треугольника или звезды.

Роторы в асинхронном двигателе подразделяются на 2 типа:

  1. Короткозамкнутый. Он является сердечником, в который заливается раскаленный металл. После этого в нем появляются железные стержни, замыкающиеся маленькими торцевыми колечками. Подобная схема конструкции именуется “беличьей клеткой”. В устройствах с высокой мощностью алюминий заменяется на медь.
  2. С фазами. Мотор имеет толстую трехфазную обмотку, которая почти не отличается от обмотки статора. В основном концы проводов скрепляются в форме звезды, а затем дополнительно закрепляются колечками. Используя щетку, которая подсоединена к обручам, к цепи можно подключить дополнительный резистор. Последний необходим для того, чтобы человек мог контролировать переменное сопротивление в фазе ротора.

В чем преимущества асинхронных электродвигателей?

Асинхронные двигатели переменного тока проще и дешевле электродвигателей других типов, поэтому в настоящее время их применяют все чаще. При выборе асинхронного двигателя следует учитывать два фактора – к.п.д. преобразования энергии и тип исполнения агрегата.

К.п.д. В ряде стран законодательством установлена минимальная величина к.п.д. для электродвигателей приводов, однако многие производители изготавливают электродвигатели по более жестким стандартам Национальной ассоциации производителей электрооборудования США (NEMA). Если, выбирая электродвигатель, вы видите, что он соответствует стандарту NEMA Premium, то это гарантирует его высокий к.п.д., надежность и экономичность.

У электродвигателей обычного качества к.п.д. равен 75…85%, у агрегатов высшего качества – 85…95%. Как считают специалисты, агрегаты с высоким к.п.д. стоят намного дороже обычных, но если электродвигатель будет работать непрерывно, он окупится быстро

Кроме того, благодаря экономии энергии улучшается экологическая обстановка, на которую все больше обращают внимание в цивилизованных государствах

Тип исполнения – важная характеристика при выборе электродвигателя. Существует пять основных исполнений асинхронных электродвигателей:

• ODP (Open drip proof) – «каплезащищенный электродвигатель открытого исполнения». Этот тип электродвигателей наиболее широко используют в промышленности. Они не оборудованы вентилятором и имеют проемы в корпусе, через которые внутрь может проникнуть грязь и влага, поэтому использовать такие электродвигатели рекомендуется только в закрытых помещениях;

• TEFC (Totally Enclosed Fan Cooled) – «закрытого типа с вентиляторным охлаждением». Эти двигатели оборудованы вентилятором, создающим поток воздуха через их корпус. Вентилятор герметизирован, и инородные частицы и жидкости не могут проникнуть в электродвигатель извне. Электродвигатели в исполнении TEFC часто применяют в конвейерах;

• TENV (Totally Enclosed Non-Ventilated Motor) – «закрытого типа без охлаждения». Эти электродвигатели также используются в подъемно-транспортном оборудовании складов, если есть внешний источник, создающий воздушный поток для охлаждения двигателя;

• TEBC (Totally Enclosed Blower-Cooled Motor) – «охлаждаемый обдувом». Эти двигатели комплектуют собственным вентилятором, но расположенным и управляемым снаружи. Электродвигатели типа TEBC обычно применяют в оборудовании высокой мощности: в подъемных кранах, лебедках и т. п. или в оборудовании, работающем с переменной скоростью, где электродвигатель иногда может работать с частотой вращения, близкой к нулю;

• EPFC (Explosion Proof Fan Cooled Motor) – «во взрывозащищенном исполнении с вентиляторным охлаждением». Используются в условиях высокого содержания в воздухе горючих и взрывоопасных элементов, например, паров бензина, других нефтепродуктов, аммиака, угольной пыли и проч.

Возможности применения любого асинхронного электродвигателя расширяются благодаря использованию электропривода с частотным регулированием (VFD). Асинхронные электродвигатели традиционной конструкции работают с постоянной частотой. Электропривод с частотным регулированием позволяет менять скорость двигателя и всей машины. В складском подъемно-транспортном оборудовании электроприводы с частотным регулированием позволяют максимально увеличивать скорость в «пиковые» периоды работы и снижать в другое время, благодаря чему экономится энергия и средства.

Что такое асинхронное дистанционное обучение

Асинхронное обучение — это формат обучения, при котором студенты проходят учебные материалы, выполняют задания и участвуют в общении в комфортном для себя ритме. Присутствие в классе — физическом или виртуальном — необязательно, даже преподавателя как такового может не быть.  

Однако гибкость асинхронного обучения не означает, что формат менее серьезный и ответственный. Для поддержания дисциплины здесь, как правило, используют строгие дедлайны.  Учиться можно в свободной форме и без привязки ко времени — но конкретный результат (пройденный курс, минимум баллов по тесту и т.п.) нужно показать к конкретной дате. 

При асинхронном обучении инструкторы и кураторы не контролируют каждый шаг учащихся, но строго следят за дедлайнами 

Каким бывает асинхронное дистанционное обучение?

Когда-то «асинхронные» материалы присылали по почте, но эти времена далеко в прошлом. Сейчас львиная доля асинхронного обучения проходит в цифровом формате. 

1. Электронное обучение 

Электронные обучение — самый продвинутый тип асинхронного обучения. Как правило, электронное обучение происходит на учебной платформе: инструкторы загружают туда учебные курсы, а учащиеся проходят их — каждый в своем аккаунте. 

Конечно, такие учебные платформы здорово упрощают процесс обучения.  К примеру, можно создать учебную программу из нескольких курсов и настроить её так, чтобы следующий курс открывался только после прохождения предыдущего. Или, например, платформа может сама отслеживать дедлайны и рассылать напоминания должникам. 

Самый удобный способ проведения eLearning — это через систему дистанционного обучения. 

Для создания электронных учебных материалов понадобится конструктор курсов. Это специальная программа, в которой можно создавать курсы, задания, тесты, тренажёры и обучающие видео в специальном формате.  

На начальных этапах качественное электронное обучение требует некоторых вложений. К примеру, набор инструментов от iSpring (платформа iSpring Learn и конструктор курсов iSpring Suite) будет стоить 174 000 за 200 активных пользователей (то есть 73 рубля за пользователя — и это далеко не самый высокий ценник на рынке). С правильными инструментами можно выжать максимум из электронного обучения: учащимся будут с желанием проходить качественные курсы в удобном интерфейсе, а тренеры получат полный доступ к статистике обучения. 

2. Курсы в формате рассылки

Курс в формате рассылки — это цепочка электронных писем на определенную учебную тему. Каждое письмо — это урок, а вместе они складываются в полноценную программу. 

При таким типа обучения, даже если у вас уже есть материалы для каждого урока в формате письма, придется продумать еще несколько моментов:

  • Как собирать электронные адреса учащихся? 
  • Как рассылать уроки? 

Курс в формате рассылки — один из самых доступных способов продемонстрировать свою экспертность 

3. Обучающее видео 

Как мы уже говорили выше, самый удобный способ проведения обучения (в том числе видео-обучения) — через СДО. С другой стороны, обучающие видео можно просто загрузить на тот же YouTube — и отправить ссылку всем желающим. 

Кстати, вот простая инструкция, как сделать обучающее видео.

Тренировки в формате видео популярны до сих пор. И это тоже асинхронное обучение

Тренировки в формате видео популярны до сих пор. И это тоже асинхронное обучение 

4. Блоги, вики и другой текстовый контент 

Вики — это веб-ресурс, которые создают, поддерживают и дополняют разные пользователи. Самый известный пример — это, конечно же, Википедия: крупнейшая в мире цифровая энциклопедия. У многих компаний есть свои собственные внутренние вики-сайты, где они формируют базу знаний на свою тему. 

Известный ресурс wikiHow расскажет как правильно делать… что угодно 

Если на сайт в формате вики может написать кто угодно, у блогов, как правило, есть редакция — команда писателей, переводчиков, корректоров и контент-стратегов, которые планируют, создают и обновляют содержимое блога. У многих банков есть замечательные обучающие блоги — например, «Дело» Модульбанка или Тинькофф — Журнал.  

С этим типом асинхронного обучения одна проблема — низкая вовлечённость. Так что прежде чем выбирать обучение в текстовом формате, ответьте на несколько вопросов: 

Пользователи захотят пополнять вашу базу знаний? 
Статьи кто-нибудь будет читать? 
Как привлечь внимание к контенту? 

Отличие от синхронного двигателя

Наряду с простыми асинхронными электрическими машинами в промышленности также используются и синхронные агрегаты. Основным отличием синхронного двигателя является наличие вспомогательной обмотки на роторе, предназначенной для создания постоянного магнитного потока, что показано на рисунке 4 ниже.

Эта обмотка создает магнитный поток, не зависящий от наличия электродвижущей силы в обмотках статора электродвигателя. Поэтому при возбуждении синхронного электродвигателя его вал начинает вращаться одновременно с полем статора. В отличии от асинхронного типа, где существует разница в движении, которая физически выражается как скольжение и рассчитывается по формуле:

где s – это величина скольжения, измеряемая в процентах, n1 – частота, с которой вращается поле статора, n2 – частота, с которой вращается ротор.

Синхронные электродвигатели применяются в тех устройствах, где важно соблюдать высокую точность синхронизации подачи питания и начала движения. Также они обеспечивают сохранение рабочих характеристик в момент пуска

На практике существует огромное количество разновидностей асинхронных электродвигателей, отличающихся как сферой применения, так и мощностью согласно ГОСТ 12139-84 . В связи с тем, что все вариации перечислить невозможно, мы рассмотрим наиболее значимые критерии, по которым асинхронные аппараты разделяются на виды.

По количеству питающих фаз выделяют:

  • трехфазные – используются в сетях, где есть возможность подключиться сразу ко всем фазам, но в частных случаях могут запускаться и в однофазной сети;
  • двухфазные – применяются во многих бытовых приборах, состоят из двух рабочих обмоток, одна из которых питается напряжением сети, а вторая подключается через фазосдвигающий конденсатор.
  • однофазные – как и предыдущая модель содержат две обмотки, одна из которых рабочая, а вторая пусковая.

По типу ротора различают:

  • с короткозамкнутым ротором – имеет тяжелый пуск, но и меньшую стоимость;
  • с фазным ротором – на роторе устанавливается вспомогательная обмотка, делающая работу электродвигателя более плавной.

По способу подачи питания:

  • статорные – классические модели, в которых рабочие обмотки устанавливают на статор;
  • роторные – рабочие обмотки помещаются на вращающемся элементе, широкое применение на практике получили асинхронные двигатели Шраге-Рихтера.

Устройство асинхронного двигателя

Понятие асинхронный означает не совпадающий по времени, неодновременный. В связи с этим, ротор такого двигателя вращается с частотой, меньшей чем частота вращения электромагнитного поля статора.

Подобное отставание называется скольжением и обозначается символом S в формуле, применяемой для расчетов:

S = (n1 – n2)/n1 – 100%, где n1 является синхронной частотой магнитного поля статора, а n2 – частотой вращения вала.

Конструктивно, стандартный асинхронный электродвигатель включает в себя следующие элементы и детали:

  • Статор с обмотками. Эту функцию также может выполнять станина, внутри которой помещается статор с обмотками.
  • Короткозамкнутый ротор. Если используется фазный – он может называться якорем или коллектором.
  • Подшипники различного типа – качения или скольжения. На двигателях повышенной мощности в передней части установлены крышки для подшипников с уплотнениями.
  • Металлический или пластмассовый охлаждающий вентилятор, помещенный в кожух с прорезями для подачи воздуха.
  • Подключение кабелей осуществляется с помощью клеммной коробки.

Данные конструктивные элементы могут незначительно изменяться, в зависимости от модификации электродвигателя.

Как уже отмечалось, асинхронные двигатели бывают трехфазными или однофазными. Первый вариант, в свою очередь, выпускается с короткозамкнутым или фазным ротором. Наибольшее распространение получили трехфазные асинхронные электродвигатели с короткозамкнутым ротором, поэтому их следует рассмотреть более подробно.

Статор обладает круглой формой и собирается из специальных стальных листов, изолированных между собой. В результате, конструктивно образуется сердечник с пазами, в которые укладываются обмотки. Для этих целей используется обмоточный медный провод, изолированный лаком. В мощных агрегатах обмотки делаются в виде шины. При укладке они сдвигаются между собой на 120 градусов. Соединение осуществляется по схеме звезды или треугольника.

Конструкция самого короткозамкнутого ротора изготавливается в виде вала с надетыми на него стальными листами. Этот набор листов образует сердечник с пазами, заливаемые расплавленным алюминием. Равномерно растекаясь по пазам, алюминий образует стержни, края которых замыкают алюминиевые кольца.

Фазный ротор состоит из вала с сердечником и трех обмоток. С одного конца они соединяются звездой, а с другого – соединяются с токосъемными кольцами, на которые с помощью щеток подается электрический ток. Во время запуска образуется большой пусковой ток асинхронного двигателя. Его можно уменьшить путем добавления к фазным обмоткам нагрузочного реостата.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение — разница потенциалов между началом и концом одной фазы

Другое определение для соединения «звезда»: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы «треугольник» отсутствует нейтраль)

Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

Звезда Треугольник Обозначение
Uл, Uф — линейное и фазовое напряжение, В,
Iл, Iф — линейный и фазовый ток, А,
S — полная мощность, Вт
P — активная мощность, Вт

Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

Пример: Допустим электродвигатель был подключен по схеме «звезда» к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А

Полная потребляемая мощность:

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза U1 U2
вторая фаза V1 V2
третья фаза W1 W2
Соединение в звезду (число выводов 3 или 4)
первая фаза U
вторая фаза V
третья фаза W
точка звезды (нулевая точка) N
Соединение в треугольник (число выводов 3)
первый вывод U
второй вывод V
третий вывод W

Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза C1 C4
вторая фаза C2 C5
третья фаза C3 C6
Соединение звездой (число выводов 3 или 4)
первая фаза C1
вторая фаза C2
третья фаза C3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод C1
второй вывод C2
третий вывод C3
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий