Схема включения светодиода в сеть 220 вольт

Плавное включение и выключение светодиодов

Есть случаи, когда необходимо обеспечить плавное включение светодиодов, применяемых для освещения или подсветки, а в некоторых случаях и выключение. Плавный розжиг может потребоваться по разным причинам.

Во-первых, при мгновенном включении свет сильно «бьет по глазам» и заставляет нас жмуриться и прищуриваться, выжидая, пока глаза привыкнут к новому уровню яркости. Этот эффект связан с инерционностью процесса аккомодации глаза и конечно имеет место не только при включении светодиодов, но и любых других источников света.

Просто в случае со светодиодами он усугубляется тем, что излучающая поверхность очень мала. Если говорить научным языком – источник света имеет очень большую габаритную яркость.

Во-вторых, могут преследоваться чисто эстетические цели: согласитесь плавно загорающийся или гаснущий свет – это красиво. Схема питания светодиодов должна быть усовершенствована должным образом. Рассмотрим два различных способа плавного включения и выключения светодиодов.

Задержка RC-цепью

Первое что должно прийти в голову человеку, знакомому с электротехникой – введение задержки с помощью включения в схему питания светодиодов RC-цепочки: резистора и конденсатора. Схема приведена на рис.1. При подаче напряжения на вход – напряжение на конденсаторе, по мере его заряда, будет нарастать за время приблизительно равное 5τ, где τ=RC – постоянная времени.

То есть, говоря простым языком, время включения света будет определяться произведением емкости конденсатора и сопротивления резистора. Соответственно, чем больше емкость и сопротивление, тем дольше будет происходить розжиг светодиодов. При отключении питания конденсатор будет разряжаться на светодиоды.

Время, в течение которого будет происходить плавное затухание, также будет определяться τ, но в этом случае вместо R в произведение войдет динамическое сопротивление светодиодов. К примеру, конденсатор на 2200 мкФ и резистор на 1 кОм теоретически «растянут» время включения на  2,2 секунды.

Представленная простейшая схема хорошо позволяет понять принцип действия этого метода, но для практической реализации она мало пригодна. Для получения рабочего решения усовершенствуем ее введением нескольких дополнительных элементов (рис.2).

Работает схема следующим образом: при включении питания конденсатор С1 заряжается через резистор R2, транзистор VT1, по мере изменения напряжения на затворе, уменьшает сопротивление своего канала, тем самым увеличивая ток через светодиод. Выключение питания приведет к разряду конденсатора через светодиоды и резистор R1.

Включим «мозги»…

Если схема должна обеспечить большую гибкость и функциональность, например, не меняя «железо» мы хотим получить несколько режимов работы и задавать время розжига и затухания более точно, то самое время включить в схему микроконтроллер и интегральный драйвер LED  с входом управления.

Микроконтроллер способен с высокой точностью отсчитывать необходимые интервалы времени и выдавать команды на управляющий вход драйвера в виде ШИМ. Переключение режимов работы можно предусмотреть заранее и вывести для этого соответствующую кнопку. Необходимо только сформулировать – что мы хотим получить и написать соответствующую программу.

В качестве примера можно привести драйвер мощных светодиодов LDD-H, который выпускается с номинальными значениями токов от 300 до 1000 мА и имеет вход ШИМ. Схема включения конкретных драйверов обычно приводится в тех. описании производителя (data sheet).

На симисторе

Для начало рассмотрим схему светорегулятора, работающего от сети 220 Вольт. Данный тип устройств работает по принципу фазового смещения открывания силового ключа. Сердцем диммера является RC цепочка. Узел формирования управляющего импульса, в качестве которого выступает симметричный динистор. И собственно, сам силовой ключ, управляющий нагрузкой — симистор.

Рассмотрим работу схемы. Резисторы R1 и R2 образуют делитель напряжения. Так как R1 является переменным, то с его помощью меняется напряжение в цепочке R2C1. Динистор DB3 включен в точку между ними и при достижении напряжения порога его открывания на конденсаторе C1 он срабатывает и подает импульс на силовой ключ — симистор VS1. Он открывается и пропускает через себя ток, тем самым на выходе мы получаем напряжение. От положения регулятора зависит, какая часть волны пойдет на лампу. Чем быстрее заряжается конденсатор, тем быстрее открывается ключ, и большая часть волны и мощности пойдет на нагрузку. Таким образом, схема буквально отрезает часть синусоиды. Ниже представлен график работы устройства.

Значение (t*) — это время, за которое конденсатор заряжается до порога открывания силового элемента. Эта схема диммера проста и легко повторяется на практике. Лучше всего она работает на лампах накаливания, из-за того что спираль в лампе имеет инертность, а вот со светодиодными и иными лампами могут возникнуть проблемы, поэтому необходимо перед окончательной установкой проверить работоспособность схемы конкретно на ваших потребителях. Рекомендуем просмотреть предоставленное ниже видео, в котором наглядно показывается, как сделать светорегулятор на симисторе:

Симисторный регулятор мощности на 1000 Вт

Плавный розжиг для светодиодов

Недавно решил собрать схему, которая позволила бы мне любую светодиодную ленту (будь то в автомобиле или дома) плавно разжигать. Изобретать велосипед я не стал, и решил немного по

ить. При поиске почти на каждом сайте находил схемы, где светодиодная нагрузка сильно ограничивается возможностями схемы.

Мне же хотелось, чтобы схема всего лишь плавно поднимала напряжение на выходе, чтобы диоды плавно разгорались и схема было обязательно пассивной (не требовала дополнительного питания и в режиме ожидания не потребляла бы ток) и обязательно была бы защищена стабилизатором напряжения для увеличения срока жизни моей подсветки.

А так как плат пока я травить не научился, то решил что сначала нужно освоить самые простые схемы и при монтаже использовать готовые монтажные платы, которые как и остальные компоненты схемы, можно приобрести в любом магазине радиодеталей.

Для того что собрать схему плавного розжига светодиодов со стабилизацией мне нужно было приобрести следующие компоненты:

Вообще, готовая монтажная плат достаточно удобная альтернатива так называемому методу “ЛУТ” где с помощью программы Sprint-Layout, принтера и того же текстолита можно собрать почти любую схему. Так вот, новичкам следует всё таки сначала освоить более простой вариант, который значительно проще и что самое главное “прощает ошибки” и так же не требует наличия паяльной станции.

Немного упростив исходную схему решил её перерисовать:


Знаю что на схемах транзистор и стабилизатор обозначается не так, но мне так проще, а вам будет нагляднее. А если же вы, как и я, успели позаботиться о стабилизации, то вам нужна ещё более простая схема:

Тоже самое, только без использования стабилизатора КРЕН8Б.

  • R3 — 10К Ом
  • R2 — 51К Ом
  • R1 — от 50К до 100К Ом (сопротивлением этого резистора можно управлять скоростью розжига светодиодов).
  • С1 — от 200 до 400мк Ф (можно и выбрать другие ёмкости, но превышать 1000мк Ф не стоит).

На тот момент мне нужны были две платы плавного розжига: — для уже сделанной подсветки ног. — для плавного розжига приборной панели.

Так как о стабилизации светодиодов подсвечивающих мои ноги я уже давно позаботился, то в схеме розжига КРЕНка уже была не нужна.

Схема плавного розжига без стабилизатора.

Для такой схемы я использовал всего 1.5 кв см монтажной платы, которая стоит всего 60 рублей.

Схема плавного розжига со стабилизатором напряжения.

Размеры 25 х 10 мм.

Достоинствами данной схемы является то, что подключаемая нагрузка зависит только от возможностей блока питания (аккумулятора авто), и от полевого транзистора IRF9540N, который очень надежен (дает возможность подключить через себя 140Вт нагрузки при токе до 23А (информация из интернета). Схема сможет выдержит 10 метров светодиодной ленты, но тогда транзистор придется охлаждать, благо в таком исполнении можно закрепить на полевик радиатор (что конечно приведёт к увеличению площади схемы).

При первом тестировании схемы было снято коротенькое видео:

А так как схему розжига для подсветки ног необходимо было подключать в разрыв основной схемы питания, то не долго думая как же её заизолировать, просто запихнул её в кусок велосипедной камеры.

Просто под рукой ничего не оказалось.

Схему нужно подключать в разрыв основной цепи питания (никакого дополнительного управляющего провода и тем более постоянного плюса конечно же не требуется).

Подключив схему плавного розжига снял ещё одно видео:

На этом всё, благодарю всех тех кто всё таки смог дочитать сей пост до конца. Конечно же для кого то это будет жёстким баяном, но надеюсь найдутся товарищи которым будет интересно.

Автор; Вячеслав Татаренко

Особенности подключения светодиодов

В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них. Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи. Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.

Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение яркости свечения, когда на них начинает действовать нормальный ток. Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор. При подаче питания светильник выходит из строя буквально за несколько минут.

Одним из вариантов некорректного подключения в сеть на 12 вольт является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.

Существует несколько способов, как подключить светодиоды на 12 вольт схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства. Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению. При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.

Подключение диммера к светодиодам своими руками

Чтобы подключить светорегулятор собственноручно вам понадобится лишь приобретённое устройство, специальный динамометрический ключ и любое удобное режущее средство для зачистки проводов.

Пошаговая инструкция состоит из трёх этапов:

  1. Перед началом всех монтажных работ необходимо обязательно выключить в доме всё электричество.
  2. Далее следует зачистить провода на приборе и подключить их таким образом, чтобы фазовый провод был установлен в клемму под названием L, а второй был подключен к разъёму под названием N.
  3. На завершающем этапе эти провода следует зажать и закрутить все имеющиеся болты, надев специальную рамку.

Стоимость может зависеть от разновидности модели и наличия всех дополнительных функций. Более дорогие модели могут похвастаться обширным перечнем различных вспомогательных опций, позволяющих с наибольшим комфортом использовать данное устройство. Цена варьируется в пределах от 100 до 1000 рублей. Гораздо дороже вам обойдутся модели с дистанционным управлением.

Поделки своими руками для автолюбителей

Простой электро тюнинг автомобиля с помощью плавно вспыхивающих и гаснущих светодиодов. Отечественные автомобили выпускаются с расчётом на среднего потребителя. Многих автолюбителей это не устраивает, поэтому такое авто стремятся доработать. Прежде всего, это касается подсветки приборной доски и салона.

Устройство плавной регулировки светодиодной подсветки можно собрать самому. В интернете легко найти интересную схему.

Без всякого сомнения, самой простой и надёжной является схема на полевом транзисторе. Рассмотрим подробнее.

Подсветка приборки.

Когда говорят о доработке приборной панели, то имеют в виду тюнинг электрики, который позволяет с помощью светодиодов сделать её уникальной.

Немного о работе схемы…..:

После включения зажигания, схема запитывается напряжением +12 V и переводится в режим ожидания.

При включении габаритов управляющее напряжение +12 V через цепочку, состоящую из диода D2 и резистора R1, поступает на транзистор КТ 503. Транзистор открывается. Электролитический конденсатор С1 заряжается.

Плавно растущее напряжение, подаётся на полевой транзистор VT1. Он плавно открывается, и постепенно увеличивает выходное напряжение, поступающее на светодиоды. Происходит их плавное загорание.

При выключении габаритов, снимается управляющее напряжение, и закрывается транзистор КТ 503. Электролитический конденсатор С1 плавно разряжается через R3. Следовательно, уменьшается напряжение на транзисторе VT1, а значит и выходное напряжение.

По мере разрядки конденсатора гаснут светодиоды.

Когда конденсатор полностью разрядится, схема снова переходит в режим ожидания, при котором потребляемый ток почти отсутствует.

Нагрузкой транзистора VT1 может быть сборка на светодиодах LED или светодиодная лента. Транзистор IRF 9540 может работать с нагрузкой до 140 Вт.

В схеме допускается производить регулировки:

Подсветка салона

Плавная подсветка салона имеет свои достоинства:

Светодиодная подсветка включается после срабатывания на дверях концевых выключателей.

Схема имеет вид:

В отличие от предыдущей схемы, управляющим здесь является напряжение –12 V, поступающее с концевых выключателей.

По сравнению с предыдущей, в схеме убраны отдельные элементы: транзистор КТ 503, диод D2 и резистор R1, но принцип работы прежний.

Схемы в формате .lay —

Сборка схемы

Элементы схемы размещаются на печатной плате, которая изготавливается с определённой последовательностью:

1. Готовим текстолитовую пластинку. Её размер зависит от количества элементов и их расположения. Вырезанную пластинку необходимо обработать мелкой наждачной бумагой и обезжирить.

2. Используя программу Sprint Layout, рисуем будущую плату. Для распечатывания рисунка, используется лазерный принтер в режиме высокой чёткости и качества изображения.

В программе выбирается режим, при котором будет напечатан только слой с дорожками без обозначений. Рисунок распечатывается на глянцевую страницу журнала или на фотобумагу.

3. К нагретой пластинке текстолита прикладываем распечатку и прижимаем горячим утюгом. Держим утюг несколько минут.

4. После остывания опускаем пластинку в холодную воду, и удаляем бумагу с поверхности.

5. В приготовленное хлорное железо, опускаем пластинку, закреплённую на кусочек пенопласта. Во время вытравливания можно вынимать и контролировать плату.

6. Протравленную пластинку отмываем в воде, и очищаем дорожки растворителем или наждачной бумагой.

7. В готовой плате сверлим отверстия для монтажа элементов. Используются свёрла 0,6 мм.

8. Облуживаем плату. Самый доступный способ — это кисточкой смазать плату флюсом, и пролудить паяльником

Важно не перегревать дорожки, чтобы они не отслоились

9. Устанавливаем на плату элементы схемы и пропаиваем.

10. В конце работ необходимо очистить плату от остатков флюса. У чистой платы не будет замыканий между дорожками.

В итоге рассмотрения, надо отметить, что описанные схемы успешно используются не только для электро тюнинга автомобиля. Их часто используют с различными устройствами, где есть питание +12 V.

Популярное;

  • Задержка включения ближнего света или ДХО на 8-10 секунд, схема
  • Простое электронное реле поворотников для ламп или светодиодов, схема
  • Простой регулятор напряжения на LM317, схема
  • Плавное включение и затухание ДХО
  • Преобразователь для зарядки конденсаторов
  • Плавный розжиг фар или светодиодов на микроконтроллере
  • Простой драйвер для светодиодов
  • Схема защиты АКБ от глубокого разряда

Плавное включение и выключение светодиодов: схемы розжига

В некоторых случаях требуется реализовать схему плавного включения или выключения светодиода (LED). Особенно востребовано данное решение в организации дизайнерских решениях.

Для осуществления задуманного есть два пути решения. Первый – покупка готового блока розжига в магазине. Второй – изготовление блока своими руками.

В рамках статьи выясним, почему стоит прибегнуть ко второму варианту, а также разберем самые популярные схемы.

Покупать или делать самому?

Если нужно срочно или нет желания и времени собирать блок плавного включения светодиодов своими руками, то можно и купить готовое устройство в магазине. Единственный минус – цена. Стоимость некоторых изделий, в зависимости от параметров и производителя, может превышать в несколько раз себестоимости устройства сделанного своими руками.

Если есть время и особенно желание, то стоит обратить внимание на давно разработанные и проверенные временем схемы плавного включения и выключения светодиодов

Что нужно

Для того, чтобы собрать схему плавного розжига светодиодов в первую очередь потребуется небольшой набор радиолюбителя, как навыков, так и инструментов:

  • паяльник и припой;
  • текстолит для платы;
  • корпус будущего устройства;
  • набор полупроводниковых приборов (резисторы, транзисторы, конденсаторы, светодиоды, диоды и т.д.);
  • желание и время;

Как видно из списка, ничего особенного и сложного не требуется.

Основа основ плавного включения

Давайте начнем с элементарных вещей и вспомним, что такое RC – цепь и как она связана с плавным розжигом и затуханием светодиода. Посмотрите на схему.

В ее состав входит всего три компонента:

  • R – резистор;
  • C – конденсатор;
  • HL1 – подсветка (светодиод).

Два первых компонента и составляют RC – цепь (произведение сопротивления и емкости). От увеличения сопротивления R и емкости конденсатора C увеличивается время розжига LED. При уменьшении, наоборот.

Мы не будем углубляться в основы электроники и рассматривать, как протекают физические процессы (точнее ток) в данной схеме. Достаточно знать, что она лежит в основе работы всех устройств плавного розжига и затухания.

Рассмотренный принцип RC – задержки лежит в основе всех решений плавного включения и выключения светодиодов.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Схемы плавного включения и выключения светодиодов

Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:

  1. Простейшая.
  2. С функцией установки периода пуска.

Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.

Простая схема плавного включения выключения светодиодов

Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.

В ее основе лежат следующие комплектующие:

  1. IRF540 – транзистор полевого типа (VT1).
  2. Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
  3. Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
  4. Led-кристалл.

Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:

  1. При запитывании цепи через блок R2 начинает течь ток.
  2. Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
  3. Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
  4. Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.

Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.

Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).

Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:

  1. Сила тока стока – в пределах 23А.
  2. Значение полярности – n.
  3. Номинал напряжения сток-исток – 100В.

Доработанный вариант с возможностью настройки времени

Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента — R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.

Приведенные выше версии схем предполагают управление по плюсу, однако в некоторых ситуациях требуется контроль по минусу. В таком случае система будет иметь обратную полярность. Поэтому в ней нужно поставить конденсатор наоборот – чтобы плюсовой заряд шел на транзисторный исток. Кроме того, необходимо заменить и сам транзистор, теперь он должен быть p–канального типа, к примеру, IRF9540N.

Подключение дневных ходовых огней

О том, как подключить ДХО, чтобы включались при запуске двигателя, задумались многие автомобилисты. Гаражные умельцы нашли 10 способов включения и выключения дневных огней, как пример:

  • От ручника;
  • Аккумулятора;
  • Вместо противотуманных фар и т. д.

И каждый из способов требует денежных затрат, а так же неплохих знаний в схемах проводки.

Смотрим видео, как установить и подключить дневные ходовые огни через блок управления:

Одна из основных схем заключается в подключении ДХО через 4-5 контактное реле, некоторые умельцы выводят провода на датчик давления. Так как при запуске двигателя на приборной панели автоматически загорается датчик давления, а значит, при подключении к нему ДХО загораются и сами огни.

Подключаем ДХО через 5-ти контактное реле

Для работы нам потребуется:

  • Само реле (например, от сигнализации);
  • Несколько проводов сечением 4 мм;
  • 3 клеммы по типу папа-мама;
  • Дневные ходовые огни;
  • Термоусадка.

Первый способ подключения ДХО заключается в следующем:

  • Возьмите ДХО, закрепите там, где вам будет наиболее удобно. Отрицательный провод припаиваем на кузов и хорошо закрепляем. Положительный провод снабжается «мамой», изолируется термоусадкой и оставляется на некоторое время.
  • В проводке автомобиля необходимо найти провод, идущий к ближнему свету любой фары. Подсоединяемся к нему, выводим, так же припаиваем «маму» и пока забываем про него. То же самое необходимо проделать с плюсовым проводом зажигания.
  • Переходим к реле. У него имеется 5 контактов, мы задействуем все кроме 87. Можете убрать его или оставить, решайте сами. Номер 86 нужно будет подключить к минусу на кузов, 85 пустить на фару, 87а подцепляется к плюсу от зажигания. Контакт под номером 30 соединяют со свободной клеммой ДХО. Оцените надежность изоляции клемм на реле, чтобы не происходило замыканий, и контакт был хорошим.

Еще видео, установка ДХО с помощью пяти контактного реле на ВАЗ 2111, обязательно смотрим:

Вот и все, проверьте свою установку на работоспособность. Включите двигатель, посмотрите, как функционируют дневные огни. Затем включите ближний свет, огни должны отключиться. После выключения света ДХО снова должны загореться, а после остановки двигателя — погаснуть. Чтобы угасание проходило плавно, стоит поставить в схему параллельным способом хороший конденсатор.

Подключение ДХО при отсутствии реле

Если у вас нет под рукой реле, то можно обойтись и без него. ДХО в плане электрики очень просто устроены. На выходе мы имеем всего два провода красный и черный. Красный по всем правилам это «плюс», а черный — «минус». Откройте капот и найдите «+» на любой из систем автомобиля, которая запускается вместе с поворотом ключа зажигания. Как пример, это могут быть провода, идущие к датчику топлива или любые другие. Подключите красный провод ДХО к положительному контакту выбранной вами системы автомобиля. А отрицательный провод подсоедините к другому одноименному по заряду контакту.

Результатом такой схемы подключения будет то, что при включении зажигания ДХО загораются, а при выключении — гаснут. Будьте аккуратны, после установки огней проверьте работоспособность всех электроприборов. И не выезжайте на дорогу при наличии каких-либо неисправностей в автомобиле.

Помните, не на каждый автомобиль можно установить ДХО. А при неправильной установке вам выпишут штраф, за изменение предусмотренной конструкции транспортного средства.

В интернете вы можете найти множество других решений, как подключить ДХО, чтобы включались при запуске двигателя. В этой статье были описаны всего два наиболее популярных и менее затратных способа. Другие схемы подключения требуют более глубокого вмешательства в электронику автомобиля, покупки различных материалов и приспособлений. А, как известно, в замысловатых схемах не каждый разберется.

Многие автолюбители уже наслышаны о пользе ДХО и начинают поиски приличной модели в магазинах. Ассортимент широко представлен китайским барахлом стоимостью от 300 до 5000руб. Некоторые вообще не понимают, зачем ставить их на автомобиль и покупают хлам за 500руб, который светит немного ярче габаритов, мощность 2 ватта. Наверное вы видали таких, они еще светят голубым светом, и часть светодиодов не горит или моргает. Затем у них появляется проблема, как подключить ходовые огни, чтобы они проработали дольше. Гаражные умельцы предлагают различные схемы подключения ДХО, самое сложное это выбрать правильную.

Простая схема для сборки своими руками

Ниже приведенная схема проста в сборке, надежна и примечательна тем, что разработана не только для плавного включения ламп накаливания на 220В, но и для их плавного отключение. А также стоит отметить, что задержка вспышки и затухания задаётся на стадии сборки по собственному усмотрению.

Схема

Принципиальная схема плавного включения ламп накаливания приведена на рисунке ниже. В её основе лежит микросхема КР1182ПМ1 (DIP8), внутри которой размещены два тиристора и две системы управления к ним. Конденсатор С3 и резистор R2 задают длительность плавного включения и выключения соответственно. Симистор VS1 необходим для разделения силовой и управляющей части, а резистор R1 задаёт ток управляющего электрода. С1, С2 – внешние конденсаторы, необходимые для управления работой тиристоров внутри КР1182ПМ1. Цепочка R4, С4 защищает элементы схемы от сетевых помех.

Принцип работы

В исходном положении контакты выключателя SA1 должны быть замкнуты. Этот нюанс следует учитывать во время подключения платы к настенному выключателю. В момент размыкания контактов SA1 конденсатор С3 начинает набирать ёмкость, тем самым запуская в работу системы управления тиристорами. На выходе ИМС через резистор R1 происходит постепенное нарастание тока, который управляет работой силового ключа. Результатом работы системы управления является плавный пуск симистора VS1 и последовательно с ним включённой лампочки EL1.

Скорость нарастания тока на управляющем электроде зависит от номинала конденсатора С3. Чтобы лампа постепенно зажигалась в течение 3 секунд, ёмкость С3 должна составлять 100 мкФ. Для увеличения времени до 10 секунд придётся установить С3 на 470 мкФ. Длительность мягкого отключения задаётся резистором R2. Рекомендуется начать подбор с номинала в 2 кОм.

Печатная плата и детали сборки

Готовую печатную плату из одностороннего текстолита размером 40х45 мм в файле Sprint Layout 6.0 можно скачать здесь. Для повышения защиты в схему добавлен предохранитель FU1 на ток 1А. Плата разработана под следующие номиналы радиоэлементов:

  • DA1 – КР1182ПМ1;
  • С1,С2 – 1 мкФ-16В (полярный);
  • С3 – 470 мкФ-16В (полярный);
  • С4 – 0,1 мкФ-630В (неполярный);
  • R1 – 470 Ом-0,25 Вт±5%;
  • R2 – 3 кОм-0,25 Вт±5%;
  • R4 – 51 Ом-0,25 Вт±5%;
  • VS1 – КУ208Г.

Использование устройств, обеспечивающих плавное включение ламп накаливания, приносит пользу людям уже несколько десятков лет. С помощью УПВЛ срок службы лампочек с нитью накала увеличивается как минимум на 40%. Что касается приведенной выше схемы, то ее работоспособность и безотказность проверена на собственном опыте.

Основные выводы

Плавный розжиг светильников на основе светодиодов популярен в автоподсветке. Кроме того, медленное включение лед-элементов позволяется продлить срок их службы, независимо от места установки. Такое устройство можно купить или изготовить самостоятельно. В последнем случае оно обойдется гораздо дешевле. Для сборки потребуются следующие материалы и инструменты:

  1. Паяльник с паяльными принадлежностями.
  2. Основа для платы, например, кусок текстолита.
  3. Корпус для крепления элементов.
  4. Резисторы, транзисторы, диоды, конденсаторы и прочие полупроводниковые элементы.

Механизм прибора плавного розжига для светодиодов работает на принципе задерживания, возникающего в цепи «резистор-конденсатор». При этом существуют две основные схемы – простейшая и с возможностью регулировки времени зажигания. Последняя отличается от первой наличием двух резисторов с контролируемым сопротивлением. Чем выше его значение, тем дольше период медленного пуска, и наоборот.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий